2006 FITHFEFESENS =73 Vol 33, No. 1(A)

dAolt] 72F AT vpolZZ olF|Y A A EHAH &7
Hg° ol 9Z BEHE
AAUET ARE DY i ARA 7Y
bluiceo@kurene.yonseiacAkr
airtight@yonsei.ac.kr
hantack@kurene.yonsei.ac.kr

KISS Korea Computer Congress 2006

A Cycle-Accurate Simulation Environment for Shader Architecture
Sang-Won Hao, Won-Jong Lee, Tack-Don Han
Media System Laboratory, Department of Computer Science, Yonsei University

X: 1

g_r

Shader architecture is one of the fastest growing fields in the ever advancing 3D graphics, and massive amounts of ideas and
technologies are being introduced to the market continuously. In this paper, we present a flexible cycle-accurate simulation
environment to accelerate and alleviate the process of developing and verifying these ideas and technologies. Combination of
3D graphics APl and hardware simulator allows OpenGL applications to be emulated off-the-shelf for a given shader
micro-architecture. Easily modified parameters allow the simulation environment to be tailored to specific demands or

requirements.

1 Introduction

Shaders in today's GPU (graphics processing unit) play a ma-
jor role in creating life-like 3D motion images in real-time. They
employ programmability to the otherwise fixed-function graphics
pipeline and enable numerous effects perviously unthinkable
without dedicated hardware. Until shaders were introduced to the
general public recently, only hardware engineers who had access
to specialized high performance 3D graphics hardware were able
to view realistic images on their workstation screens in real-time.
Today, as shaders become wide spread, 3D graphics on every-
day desktops are nearing motion picture quality. This is due in
part to letting the application programmers concentrate on invent-
ing novel algorithms rather than worrying about how to imple-
ment and squeeze in those algorithms into the graphics
processors. One can truly say that it is indeed the Renaissance
in 3D graphics [1].

The paradigm of the problem we are facing today has
changed. The ever fast growing 3D graphics market is pumping
the evolution of the graphics hardware at a tremendous rate with
each successive generations yielding not only more computing
power but new functionalities as well. The traditional way of
drawing up a new algorithm, implementing in behavioral level,
and then to RTL is just too time consuming to simply find out
whether the new algorithm will be feasible when new function-
alities from major hardware vendors are being poured into the
general market every quarter. A simulator which can readily em-
ulate the new algorithm will greatly save time and effort. This,
in turn, will free up time to investigate deeper into the algo-
rithm itself and fine-tune technological hurdles that might preside
within. Ultimately, new technologies and ideas can be adopted
quickly and with ease.

In this paper, we present an easily applied and flexible cy-
cle-accurate simulation environment for shader micro-architecture.
The simulation environment is composed of 3D graphics API
adopted from the publically available OpenGL clone library
called Mesa 3D Graphics Library {2] and the shader architecture
simulator itself. Through this combination, real applications based
on OpenGL, such as 3D graphics games, can be analyzed off
the shelf, cycle by cycle without any modification to the
application. Two different levels of architectural abstractions are
provided to save time and fit the needs of simulating and ver-

196

ifying the desired architecture or functionality. Parameters for the
simulator are easily modified to find the most efficient allocation
of hardware resources for specific or arbitrary application. The
whole simulation process is automated with minimal user inter-
vention and execution-driven to closely match the workings of a
GPU. All in all, the objective of the simulation environment is
to provide a platform for quick and hassle-free development and
implementation of new architectures or ideas. This characteristic
is demonstrated through design space exploration of benchmark
applications.

The rest of this paper is divided into four sections. Section 2
contains brief information about replated works. A thorough de-
scription and view into the design of the simulator environment
is located in section 3 and some case studies done with the
simulator environment is shown in section 4. Lastly, we con-
clude the paper with discussion on future work in section 5.

2 Related work

Due to the increase in interest and demand for 3D graphics,
there have been many simulation related works. A co-design
framework utilizing both hardware and software for graphics
hardware accelerator was presented by Ewins et al [3]. In this
framework, a number of software tools were developed in the
C++ language to work either standalone or alongside hardware
models written in a high level hardware description language
(VHDL) to aid in algorithm research and hardware design. Lee
et al [4] developed a testing environment for general graphics
architectures. They supported OpenGL applications and used a
hardware description macro to support hardware modeling and
architecture modification. Sheaffer et al [5] developed a config-
urable micro-architectural simulator for GPUs. Their simulator
could evaluate time-dependent behaviors of various functional
units. They demonstrated the use of the simulator on a simple
hypothetical architecture to analyze performance bottlenecks and
to explore new GPU micro-architectures. Crisu et al [6] pre-
sented a hardware/software co-simulation framework for em-
bedded systems. In combination with SystemC RTL models of
graphics pipeline, their framework supports tools to assist in the
visual debugging of graphics algorithms implemented in hard-
ware, and to estimate the performance in terms of throughput,
power consumption, and area.

L2006 F=AFEEETEUNS =F3F Vol 33, No. 1(A)

[Userdatinsd Corfiguration h
Application MesaGL }
| omnauEs b venenBiter b Simulator (Vertex Shader)
- e
Pregam Insirucsion Bulfer e =0 =
v || i
i
Fixea Function "
Pisling
1 Simulator (Pixe! Shader}
Rugisint Fles
Pixed Shater
instrvcion 8uee 1T

D Sreanl »n
Victor Unk Funglion Uit
o e
Cathe
Frame Buffar =
.

¥

I Standation Pesukt

Fig. 1 Internal block diagram of the simulation environment

Previous researches were mainly focused on the general graph-
ics hardware with no or minimal consideration for shader
architecture. Although Moya et al [7] constructed a simulator
with shader architecture in mind, it states a proprietary model
unfit for immediate use with the current graphics applications. In
this paper, we concentrate on simulating the shader micro-archi-
tecture embedded within the graphics pipeline. Our simulation
environment enhances productivity in shader architecture design
with straightforward layout and user configurable parameters. As
a result, more thought and time can be invested in more critical
tasks.

3 A cycle-accurate shader architecture simulator

One of the numerous benefits of our simulator environment is
that real 3D graphics applications based on OpenGL will run
without any modification to the application itself, therefore not
needing anything other than the binary file and files required for
execution. In addition, simulation results of processed cycles are
shown simultaneously as the application is being executed
normally. The following subsections describe how this is accom-
plished and deal more about the design and tracking mechanism
of the simulator environment.

3.1 Integrating 3D graphics AP1 and H/W simulator

As a whole, the simulator environment takes the form of the
hardware simulator grafted onto the 3D graphics APl named
MesaGL derived from Mesa 3D Graphics Library [2]. MesaGL
is in charge of communicating with the 3D graphics application
and feeding instructions and data to the simulators. It also per-
forms fixed-function portion of the 3D graphics pipeline. Fig. 1
shows the intemnal block diagram of the simulator environment.
The simulation environment is initiated by calls to OpenGL.
Therefore, in order for the simulation environment to be used,
the host machine's default OpenGL library file must be replaced
with the simulation environment's MesaGL library file. This one
time chore is all that is needed to run simulations. These calls
are intercepted and sent to MesaGL where fixed function pipe-
line processing is done. At the same time, vertex and pixel
shader simulators are loaded with instructions and necessary reg-
ister file entries from shader assembly codes compiled during
run-time. MesaGL forwards vertices to the vertex shader simu-
lator and reads back the processed vertices. Afterwards, these
processed vertices are rasterized to pixel fragments which are
then sent to pixel shader simulator for further processing and
the resulting pixel fragments are returned to MesaGL to be fi-

197

nally shown on screen. Internally, vertex and pixel shader simu-
lators execute instructions in their instruction buffer cycle by cy-
cle in a pipeline manner. The state of the fetch & decode unit,
reservation stations, functional units, and writeback actions are
recorded in the simulation result files every cycle.

Because MesaGL and vertex and pixel shader simulators work
seamlessly masquerading as a normal OpenGL, the 3D graphics
application has no way of knowing that it is being run by a
simulator and the 3D graphics hardware. This characteristic
works in our favor as real, unmodified 3D graphics applications
run on host computers indiscriminative of whether the applica-
tions were built with shader programs specially designed for
NVidia GPUs (NV) or written in Cg [8). Of course, shader pro-
grams written for arbitrary GPUs (ARB) are also supported.

3.2 Level of architectural abstraction

There are two levels of abstractions supported on the simu-
lator environment and they are called functional simulation
mode and performance simulation mode. The functional simu-
lation mode incorporates methods used in SimpleScalar [9]. This
simple and quick mode provides the ability to test the in-
struction set architecture and to visually verify the algorithms for
executing each instruction. In addition, it fast-forwards to a point
where a more elaborate testing is desired. The performance sim-
ulation mode is based on Tomasulo's algorithm [10]{11] to ex-
ecute and complete instructions out-of-order. A detailed view of
the idea behind performance simulation mode is illustrated in
Fig. 2. All instructions are register to register, just as GPUs are
built like, and the simulator emulates 4 stage pipeline of fetch,
decode, execute, and writeback. Reservations stations are ap-
pended to each functional unit. The temporary register file which
is the only read-write register file in the simulator, has ready bit
and tag augmented to each register. The fetch & decode width,
size of the reservation station, types and numbers of functional
units, latency and throughput of functional units, and size of
each register file are all modifiable through the user-defined con-
figuration file to suit the requirements.

3.3 Simulation results

Tracing the pipeline status of the simulator is one of the most
important task in using the simulation environment. During
application's run-time, vertex and pixel shader simulators
continuously output simulation information of every vertex or
pixel fragment for every cycle. This information is stored
separately for vertex and pixel shader simulators in two files for

Register Fios

fnsuction
Memnry

Param RagFle Const RayFie

e

Unig
3
RSE]]
RSEDP] RSE[#}
Sk »
RSER] RSE[3}
P Py
o v s J I f e o - s |
|

Caetput Bstfer

Fig.2 Abstracted architecture in performance simulation mode

2006 F=HFE TSRS =23 Vol. 33, No. 1(A)

later viewing. Inside each file, information about where the
instruction is located in the pipeline is given for every cycle
For simplicity, instructions of a given shader program is
enumerated from 0 to n-1 where » is the total number of
instructions. When viewing a particular cycle, enumerations of
instructions are found spread across four sections. The four
sections correspond to the four pipeline stages of the simulator.
Unlike other stages, the execute stage is sub-divided into three
subsections. The reason is to show which instruction is in the
reservation station, which has begun processing, and which is in
the functional unit's output buffer waiting for a free slot on the
result bus. At the end of completion of a vertex or pixel
program, a summary report of when each instruction completed
each pipeline stage is presented.

4 Case study

In this section, we tested the simulator for processing arbitrary
instruction set architecture with proprietory algorithms for in-
struction execution. Four benchmark applications were picked
from demo applications in NVidia's SDK [12]. They were se-
lected based on the diversity of shader hardware utilization. For
example, bumpy shiny patch application was programmed for
ARB supporting GPUs while the rest are dedicated to NV com-
patible NVidia GPUs.

4.1 Functional verification

To test the flexibility of functional aspect of the simulation
environment, we applied a modified vertex shader version 1.1
and pixel shader version 1.4 instruction set architecture targeted
at mobile devices to our simulation environment. Fig. 3 displays
the captured screen of the benchmark applications. Even when
the images were magnified to limit of the screen, there were no
visible differences between our simulator and the images ren-
dered by the GPU.

Fig. 3 Benchmark programs for functional verification. (a) bumpy
shiny patch (BSP), (b) bump mapping (BM), (c) dot product
(DP), and (d) refraction (REF).

4.2 Design space exploration of performance simulation mode

After verifying that the instruction set architecture was feasible
in terms of visual quality, we switched to performance simu-
lation mode to find out which combination of functional unit
quantity and reservation station count will give us the best per-
formance, cycle-wise. Fig. 4 exhibits the IPC (instructions per
cycle) of the benchmark applications with varying number of
reservation stations and functional units. As you can see, most
of the applications do not benefit from the increase in number
of functional units or reservation stations. The reason for this
phenomenon is due to the fact that typical shader programs’ in-
structions are tightly dependent on one another. In other words,
read-after-write, also called true dependency, is too high to be
overcome by method using reservations stations.

5. Conclusion
In this paper we introduced a simulation environment that em-
ulates a shader micro-architecture producing cycle accurate simu-

198

IPC of Apz haztons 1" Funztona Ut I5C 3t Aoz icat ons (4 Ranervaton Statians}

2 08
o i —— o7 gy
2 Q(,,&"”WWMW\W“@ 9% Y
* B 2
£ oe '™
A 03
<2 w2
B 0
° °

0 3 [T T T o - 2 3 . s
ha.of Revevaticn Sttfors Ho o* Functona Unis

Fig. 4 IPC of benchmark applications with different number of
reservations stations and functional units

lation results. By combining 3D graphics APl and a custom built
hardware simulator, detailed information about how the in-
structions are being processed out-of-order inside the given shad-
er architecture can be extracted from real 3D graphics applica-
tions without any modifications. Two levels of architectural ab-
stractions are provided to speed-up and ease the verification
process. Configurable performance simulation mode allows cus-
tom tuning of the simulator to fit the confronting requirements.
The current simulation environment only supports vertex and
pixel shader version 1.3 and below. In the near future, we are
planning to raise the version up to the current market standard
and support branch prediction and texture access in vertex
shader. Also, incorporating multithreading techniques, power esti-
mation, and support for multiprocessors wiil be implemented.

References

[1] Matt Pharr, editor., "GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation,”
Addison Wesley, 2005, ppxxix

[2] Mesa 3D Grahpics Library. hi

[3] Ewins. 1.P., Watten, P.L., White, M., McNeill, M.D.J,, and Lister,
P.F., "Codesign of graphics hardware accelerators,” Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware, 1997.
ppl103-110

[4] Lee, LH., Kim, LY., Im, Y.H, Choi, Y., Shin, H., Han, C., Kim,
D., Park, H., Seo, Y.I, Chung. K. Yu. C.H.. Chun, K., and Kim,
L.S., "A hardware-like high-level language based environment for 3D

graphics architecture exploration,” Proceedings of IEEE International
Symposium on Circuits and Systems, May 2003, pp512-515

[5] Sheaffer, 1. W.. Luebke. D., and Skadron, K., "A flexible simulation
framework for graphics architectures,” Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug.
2004, pp85-94

[6] Crisu, D., Cotofana, S.D., Vassiliadis, S., Liuha, P, "GRAAL - a
development framework for embedded graphics accelerators,”
Proceedings of Design, Automation and Test in Europe, Feb. 2004,
ppl1366 - 1367

{7] Moya, V., Gonzalez, C., Roca, J., Fernandez, A, Espasa, R., "Shader
Performance Analysis on a Modern GPU Architecture,” Micro-38,
Nov. 16, 2005

[8] Cg Homepage, http//www.nvidia.com/cg

[9] SimpleScalar, http://www.simplescalar.com

[10] Weiss, S., Smith, J.E., “Instruction Issue Logic for Pipelined
Supercomputers.” In Proceedings of International Symposium on
Computer Architecture, pp. 110-118,

[11] Tomasulo, RM., "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Joumal, Jan. 11, 1967

[12] NVidia SDK, hup://developer.nvidia.com/object/sdk_home.tm!

