Antimicrobial Effect of Scilla scilloides (Lindl.) Druce Root Extract

¹Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea ²Division of Animal Life Science, Konkuk University, Seoul 143-701, Korea ³Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701, Korea ⁴Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701,

Korea

Eun-Ju Yeo^{1,2}, Kee-Tae Kim¹, Ye Sun Han^{1,3}, Seung-Yeol Nah1⁴, and Hyun-Dong Paik^{1,2}*

Objectives

The purpose of this study is to evaluate the root-extract of *S. scilloides* as an antimicrobial agent against food pathogens.

Material and Methods

Sample preparation S. scilloides was taken from the southern area of An-dong (Korea). Dust was removed from the roots with water (Fig. 1).

Bacterial strains The bacterial strains used for antimicrobial testing were: S. aureus ATCC 35556, S. enteritidis ATCC 12021, E. coli O157:H7, and C. parapsilosis. **Determination of total solids, fat soluble components, and total carbohydrates** The solid contents of S. scilloides roots were measured after drying at 105C. The fat recluble content was extracted using ethyl ether. To determine the total

fat-soluble content was extracted using ethyl ether. To determine the total carbohydrate content of both samples, the Lane-Eynon method was used after acid-hydrolysis in 10 mL of 1 N HCl with refluxing in a boiling water bath for 2 hr. *Determination of antimicrobial activity* The antimicrobial effect on each sample

was determined by measuring the turbidity with a spectrophotometer at 620 nm.

Statistical analysis Analysis of variance was performed for triplicate samples using the SAS program.

Results and Discussion

Solids and fat-soluble contents As shown in Table 1, the solid content of *S. silloides* root extract was about 63% and the total carbohydrate content was about 57%. The fat-soluble content, which includes the bio-effective compounds, was 3.1% according to the Folch method.

Antimicrobial activity At 0.1% and 1.0% concentrations of extract in TSB-YE broth, the growth of *S. aureus* ATCC 35556 and *C. parapsilosis* KCCM 35428 was inhibited more so than that of *S. enteritidis* ATCC 12021 and *E. coli* O157:H7, a gram-negative bacteria (Fig. 2). Additionally, it appeared that *E. coli* O157:H7 was more resistant to growth inhibition than the other strains.

Corresponding author : 백현동 E-mail hdpaik@konkuk.ac.kr Tel : 02-2049-6011

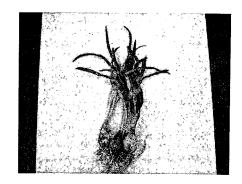


Fig. 1. A picture of Scilla scilloides (Lindl.) Druce.

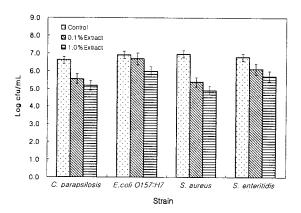


Fig. 2. The antimicrobial effects of S. silloides root extract.

Table 1. The composition of total solids, fat-soluble compounds, and carbohydrates in S. scilloides roots

Compounds	Values
Solid content (%)	63.6 ± 1.4^{-1}
Fat-soluble content(%)	3.1 ± 0.4
Carbohydrates (%)	56.7 ± 1.5
Others (%)	3.8 ± 0.2
Moisture contents (%)	36.4 ± 1.2

The values are mean±S.D