Curved Beam Theory Based On Centroid-Shear Center Formulation

도심-전단중심 정식화를 이용한 개선된 곡선보이론

  • 김남일 (성균관대학교 건설환경연구소) ;
  • 경용수 (성균관대학교 건설환경시스템공학과) ;
  • 김문영 (성균관대학교 건설환경시스템공학과)
  • Published : 2006.04.01

Abstract

To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to tl1e solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

Keywords