Characteristics of Performance Parameters of Dual Mode (Ramjet-Scramjet Combined) Engine Based on the Analysis of The Operating limitations

Hong-Gye Sung* · Jong-Ryul Byun**

ABSTRACT

This paper presents the characteristics of the performance parameters of dual mode (ramjet-scramjet combined) engine, inlet and combustor for wide range of flight Mach number, resulted from the analysis of its operating limitations. The transitional-critical flight Mach number from ramjet to scramjet and the performance of two types of combustors, such as constant pressure- and constant area- combustor, are conceptually evaluated.

초 록

본 논문은 이중모드램제트(램제트-스크램제트 연합 작동) 엔진의 작동한계 분석을 기초하여 광범위한 비행 마하수를 충족시키는 엔진에 대한 설계 인자 (흡입구와 연소실)를 고찰하였다. 램제트와 스 크램제트의 작동 천이 비행 마하수를 도출하고, 두 가지 경우의 연소기(일정한 입력과 일정한 단면적)의 연소실 작동 한계 특성을 파악하여 이중모드 램제트 엔진의 설계 개념을 연구하였다.

Key Words: Dual Mode(이중모드), Ramjet(램제트), Scramjet(스크램제트), Operating limitation (작동 한계), Total Pressure Recovery(전압력 회복계수)
주: 전진국(미국, 프랑스, 러시아, 일본, 중국 등)에서의 이에 대한 연구가 활발히 진행되고 있다 [2]. 본 연구의 목적은 램프트-스크램프트가 하나의 엔진시스템에서 작동할 때에 각각의 작동한 제를 공기 및 열역학적 관점에서 분석하였으며, 이를 통하여 엔진 설계 시 고려해야하는 설계 개념을 파악하는 것이다.

Fig. 1 Comparison of lsp among several propulsions

2. 작동계

2.1. 힘입구
초·극음속 비행에 있어서 힘입구의 성능은 엔진 성능에 있어서 주요한 변수이며, 힘입구에서 발생하는 손실은 총량과 정성효과로 인한 손실로 기인한다. 힘입구의 성능을 대표하는 성능 인자는 전압력 회복이라 할 수 있는데, 이는 Eq. 1과 같이 표현된다.

\[\eta_{K} = \frac{(V_{t}'^2)}{V_{0}^2} = 1 - \frac{1}{2} \frac{P_{1}}{P_{0}} \frac{\gamma - 1}{\gamma - 1} \frac{M_{0}^2}{\gamma - 1} \]

(1)여기서 \(\eta_{K} \)는 힘입구에서 운용에너지 회복율을 의미하며, \((V_{t}') \)는 힘입구 출구에서의 전압력으로부터 대기 압력까지 동등도로 평창함으로써 얻어진 속도이다. \(V_{0} \)와 \(M_{0} \)는 자유호름의 속도와 마하수를 의미하며, \(P_{1} \)는 각각 자유호름과 힘입구 출구에서의 전압력이다. Fig. 2는 수직 총량과 각각 힘입구의 표준 Mil-Spec 전압력 회복계수[3]와 일정한 운용에너지의 효율값을 사용하여 회복계수를 계산한 결과를 비교한 것이다. 비행 마하수 4이상에서는 \(\eta_{K} = 0.95 \sim 0.96 \), 마하수 4이하에서는 \(\eta_{K} = 0.96 \sim 0.97 \) 사이의 값을 사용할 경우 전압력 회복계수와 유사한 값을 가지게 됨을 알 수 있다.

Fig. 2 Comparison of total pressure recovery with constant KE values

램프트 엔진 작동에 있어서 힘입구 출구, 즉 연소기 입구에서의 마하수 \(M_{0} \)는 중요한 성능변수이며 힘입구 압축방식(내/외부/복합 압축)에 따라 결정된다. 램프트엔진의 작동계는 연소기로 유입되는 공기가 해리(dissociation)되지 않는 온도조건(1450~1650K 이하)으로 설정할 수 있으며, 이를 기초로 \(M_{0} \)의 경계를 결정할 수 있다. 주어진 연소기 입구 온도 \(T_{0} \)에 대해 \(M_{0} \)의 경계는 비행조건과 연관되며 힘입구의 온도비(\(\theta \))는 Eq. 2와 같이 정의된다.

\[\theta = \frac{T_{0}}{T_{a}} = \frac{1 + \frac{\gamma - 1}{2} \frac{M_{0}^2}{\gamma - 1}}{1 + \frac{\gamma - 1}{2} \frac{M_{0}^2}{\gamma - 1}} \]

(2)

Fig. 3 Critical flow speed at a diffuser (\(M_{0} \)) to avoid air dissociation

Figure 3은 고도 11km<\(H <20 \)km에서 \(T_{0} \)=216.65K, \(T_{a} =1550K\)에 대한 경계를 보여준다. \(M_{0} \leq 0.4 \)인 램프트의 경우 비행 마하수는
\(M_s \leq 0.65 \)로 제한된다. 흡입구에서 공기의 허리가 피하기 위해서 \(M_s > 0.16 \) \((M_s \geq 1)\)에서는 초음속 연소(스크램Jet)가 적용되어야 한다. 경험적으로 스크램Jet 인 경우, \(M_s/M_a = 0.375 \) 확산관 최소치로 하는 안전여유를 가지고 적용될 수 있다.

![Image](image.png)

Fig. 4 Total pressure ratio for normal shock wave according to \(\gamma \) variation

극초음속 유동에서 충격파를 지나는 공기의 온도변화는 매우 높아서 브라운 기체 영향이 중요하다. 유동은 완전기체 방정식이 적용되지 만, 비열비가 일정하지 않음을 고려해야 한다[4].

Fig. 4는 비열비 변화에 따른 수직 충격파를 통한 전압비의 변화를 보여주는 데, 만약 마하수 5에서 수직 충격파가 발생한다면 충격파를 통한 전압비 손실의 차이는 \(\gamma = 1.4 \) (278K)와 \(\gamma = 1.35 \) (833K)사이에서 20%이상 된다. 따라서 이것은 극초음속 유동에서 실제 가스 효과(비열비 변화) 영향의 중요성을 설명해 준다.

2.2 연소기

연소기는 일정한 가스 상태량을 가진 정상상태, 절량추가를 가진 비점성 유동으로 가정하고, 절량, 운동량, 에너지 보존을 적용할 수 있다.

\[\dot{m}_s + \dot{m}_l = \dot{m}_1 + (1 + f) = \rho_1 V_1 A_1 \]

\[(m_s + m_l) V_1 - m_s V_s = P_1 A_1 - P_s A_s + \int_{wall} Q \]

\[Q = (m_s + m_l) \rho_1 T_1 - m_s c_v T_s = m_s n_r H_f = m_s q \]

\[\frac{P_1}{T_1} = \frac{\rho_1 T_1}{P_2 T_2} \]

(1) 일정한 단변적을 가진 연소기인 경우

Eqs. (4)-(7)로부터 연소로 인한 열량 추가는 연소기 출구 마하수가 1.0이 되도록 만드는데 (thermal chocking), 연소기내 열량 추가는 chocking 조건에 의해 제한된다. Chocking 현상은 일정한 단방적을 가진 연소기인 경우 연소기내 압축속과 초음속 유동 모두에서 발생한다. \(M_s = 1 \)에 대한 온도비의 원계조건은 아래와 같이 정의된다.

\[\frac{T_1}{T_1} \lim = \frac{1}{2/(\gamma + 1)(1 + f)} \left[\frac{1 + \gamma M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right] \]

(8)

또한 연소로 인한 열량 추가율의 원계조건은

\[\frac{T_1}{T_2} \lim = \frac{1}{2/(\gamma + 1)(1 + f)} \left[\frac{1 + \gamma M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right]^{-1} \]

(9)

이에, 전압비의 원계조건은 다음과 같다.

\[\frac{P_1}{P_2} \lim = \left(\frac{\gamma - 1}{2} \right) \left(\frac{1 + \frac{\gamma - 1}{2} M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right)^{\gamma - 1} \]

(10)

(2) 일정한 압력을 가진 연소기인 경우

일정한 압력을 가진 연소기에서 압축속과 초음속유동인 경우 모두 연소기 출구 마하수가 입력하기보다 작게 \(M_s < M_a \)라면 따라 압축속 유동인 경우에서도 chocking 조건이 발생할 수 있다.

\(M_s = 1 \)에 대한 온도비의 원계조건은 아래와 같이 정의된다.

\[\frac{T_1}{T_2} \lim = \frac{1}{2/(\gamma + 1)(1 + f)} \left[\frac{1 + \gamma M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right] \]

(11)

또한 연소로 인한 열량 추가율의 원계조건은

\[\frac{T_1}{T_2} \lim = \frac{1}{2/(\gamma + 1)(1 + f)} \left[\frac{1 + \gamma M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right]^{-1} \]

(12)

이에, 전압비의 원계조건은 다음과 같다.

\[\frac{P_1}{P_2} \lim = \left(\frac{\gamma - 1}{2} \right) \left(\frac{1 + \frac{\gamma - 1}{2} M_s^2}{1 + \frac{\gamma - 1}{2} M_s^2} \right)^{\gamma - 1} \]

(13)
Figure 4는 일정한 면적의 연소기와 일정한 압력의 연소기에 대하여 전압력비의 한계를 보여준다. 연소기 입구 마하수(\(M_i\))가 초음속일 경우, 동일한 마하수에서 일정한 압력을 가진 연소기가 일정한 면적을 가진 연소기보다 더 높은 전압력 손실을 가져온다. 또한 전압력 손실은 동일한 온도비에서 연소기 내 유동이 아음속인 경우보다 초음속인 경우가 높게 커지게 된다.

Fig. 4 Limits of total pressure ratio with a constant area combustor and a constant pressure combustor

Figure 5는 두 가지 형태의 연소기에 대하여 연소로 인한 열량 추가의 한계를 보여준다. 일정한 단면적을 가진 연소기에서 아음속 연소일 경우 choking 발생을 막기 위해 마하수는 충분히 낮아야 한다. 초음속 유동 случае q_{lim}/c_{f_{12}}의 값은 일정한 연소기 면적인 경우와 비교해서 일정한 압력의 경우가 훨씬 높음을 알 수 있다.

Fig. 5. Limits for heat addition with a constant area combustor and a constant pressure combustor

본 연구에서는 램프트-스크램프트 엔진의 작동 한계를 살펴봄으로써 광범위 비행 마하수에서 작동이 가능한 이중모드(램프트-스크램프트 연합 작동)의 성능을 고찰하였다.

(1) 일정한 운동에너지의 효율률을 사용하여 회복계수를 계산한 결과, 비행 마하수 4이상에서는 \(\eta_{hr}=0.95\sim0.96\), 마하수 4이하에서는 \(\eta_{hr}=0.96\sim0.97\)사이의 값을 사용할 경우 전압력 회복계수와 유사하다.

(2) 연소실 입구 마하수 \(M_i \leq 0.4\)인 램프트의 경우 비행 마하수는 5.65로 제한되며, 흡입 공기의 해리온을 피하기 위해서 비행마하수 6이상에서는 초음속 연소가 적절되어야 한다.

(3) 연소기 입구 마하수(\(M_i\))가 초음속일 경우, 동일한 마하수에서 일정한 압력 연소기가 일정한 면적에서의 연소기보다 더 높은 전압력 손실을 나타내며, 동일한 온도비에서 연소기 내 유동이 아음속인 경우보다 초음속인 경우가 높게 된다.

(4) 일정한 단면적을 가진 연소기에서 아음속 연소일 경우 choking 발생을 막기 위해 마하수가 충분히 낮아야 한다. 초음속 유동인 경우 연소열량의 한계치는 일정한 면적인 경우와 비교해서 일정한 압력인 경우가 훨씬 더 높다.

참고 문헌

1. 성홍계, 윤현규, "램프트/스크램프트의 기술등향과 소요기술분석 I. 램프트엔진(역제점제트, 덤티드로켓)", 한국추진공학회지, 10권 1호, 2006.3, pp.72-86
2. 성홍계, 윤현규, "램프트/스크램프트의 기술등향과 소요기술분석 II. 스크램프트 및 복합엔진", 한국추진공학회지, 10권 2호, 2006.6, pp.115-128
3. MIL-SPEC-5007D, 1973