ELM을 이용한 개선된 속성선택 기법

Effective Feature Selection Algorithm by Extreme Learning Machine

  • 조재훈 (충북대학교 전기전자컴퓨터공학부) ;
  • 이대종 (충북대학교 BK2l 충북정보기술사업단) ;
  • 전명근 (충북대학교 전기전자컴퓨터공학부)
  • 발행 : 2006.11.17

초록

본 논문에서는 ELM(Extreme Learning Machine)을 이용하여 계산속도 뿐만 아니라 성능면에서도 우수한 입력 속성선택 기법을 제안한다. 일반적으로 입력 속성 선택문제는 다양한 속성들의 영향을 고려함으로써 모든 입력속성들을 평가하는데 많은 계산량이 요구되는 단점이 있다. 이러한 문제점을 개선하기 위하여 학습속도가 기존의 신경회로망에 비하여 월등히 우수한 ELM 알고리즘을 적용한다. 입력속성 선택은 ELM으로부터 산출된 출력값을 이용하여 출력 오차에 영향이 큰 속성들 순으로 순위를 결정한 후, 전방향 선택이나 후방향 선택기법을 이용하여 입력속성을 선택한다. 제안된 방법은 다양한 데이터에 적용하여 타당성을 검증한다.

키워드