(05-1-45)

Characterization of Salt Resistant Rice Mutant Lines with AZC Resistance

Jae Young Song^a, Dong Sub Kim^a, In Sook Park^a, Sang Jae Lee^a, Hi Sup Song^a, Kwon- Kyoo Kang^b, Si-Yong Kang^{a*}

^aDept. of Plant Genetics and Breeding, Korea Atomic Energy Research Institute.

^bDept. of Biotechnology, Bio and Information Technology, Hankyong National University.

Objectives

To assess salt resistant rice mutant lines derived from the applications gamma ray and AZC, a proline analog, we investigated biological characters by biochemical and molecular analyses.

Materials and Methods

- Plant materials; 7 rice mutant lines with salt resistant in M₃ generation selected from 20,000 AZC resistance seeds were treated with 1.5 % NaCl for 48 hrs.
- 2. Methods; General amino acid content analysis.

Ion contents analysis.

cDNA-RAPD and RT-PCR.

Results and Discussion

In amino acid analysis, total amino acid contents in seedling leaves of the SR-13 and SR-16 were 1.24 and 1.30 times higher than the wild-type (cv. *Donganbyeo*), 1.49 and 2.43 times in seeds, and 1.32 and 1.60 times in callus, respectively. Ion content was analyzed in leaves and roots of the salt resistant mutant lines and the wild-type. The ratio of Na^+/K^+ in all the SR-lines [leaves, 1.02 (SR-13) ~ 3.75 (SR-29); roots, 11.5 (SR-10) ~ 28.5 (SR-13)] was showed lower than the wild-type (leaf, 3.46; root, 32.9). The cDNA-RAPD analysis showed specific bands in the SR-lines absent in the wild-type. In addition, higher RNA expression of P5CS and NHX1 genes in RT-PCR analysis was observed in the all SR-lines than in the wild type.