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Entamoeba histolytica is a tissue-invasive protozoan parasite that causes amoebic dysentery and
liver abscess in human beings. To establish successful attachment and invasion of the amoeba in vivo,
E. histolytica must to bind to the large intestinal epithelium and destroys the tissues. In vitro live
trophozoites of E. histolytica have been well known to induce apoptosis of host cells including
neutrophils, T lymphocytes and macrophages. Host cell apoptosis by the parasite pathogens might be
of particularly important for both the parasite as a survival mechanism and the host as a defense
mechanism for the subsequent clearance of apoptotic neutrophils by the macrophages recruited at the
inflammation sites.

Mitogen-activated protein kinase (MAPK) cascades are protein kinase transduction pathways that
are deeply involved in the signaling for various immune responses including apoptosis. In mammalian
cells, there are at least three MAPK subtypes, such as extracellular signal-regulated kinase (ERK1/2),
p38 MAPK and c-Jun N-terminal kinase (JNK). The ERK1/2 cascade is activated through receptor-
mediated signaling stimuli including growth factors, and is associated with cell proliferation,
differentiation and survival. Reactive oxygen species (ROS), such as superoxide anion (O,), hydrogen
peroxide (H;0,) and the hydroxyl radical (OH), have recently been regarded as important intracellular
signaling messengers inducing apoptosis. Intracellular ROS have been reported to directly activate
MAPK in cell death systems.

Neutrophils are recruited to the inflammatory sites as a first line of strong defense against microbes
including E. histolytica. Circulating neutrophils have a short life span in vivo, and aged cells in vitro
undergo a spontaneous death within 1-2 days of culture in the absence of growth factors. In spite of
fact that MAPK and ROS have been found to be powerful signaling molecules responsible for
mediating neutrophil apoptosis, the possible role of ROS and MAPK in host cell apoptosis induced by
E. histolytica is not totally understood.

In this study, we investigated the role of ROS and their interaction with MAPK in the neutrophil

apoptosis induced by E. histolytica. The neutrophils incubated with live trophozoites of E. histolytica
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revealed a marked increase of receptor shedding of CDI16 as well as phsophatidylserine (PS)
externalization on the cell surface. The Enfamoeba-induced apoptosis was effectively blocked by
pretreatment of cells with DPI, a flavoprotein inhibitor of NADPH oxidase. A large amount of
intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI
strongly inhibited the Enfamoeba-induced ROS generation. However, a mitochondrial inhibitor
rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E.
histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of
ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1
inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis.
Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not
phosphorylation of p38 MAPK. These results suggest strongly that NADPH oxidase derived ROS-
mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis.

In summary, we have presented evidence that NADPH oxidase generated ROS (a non-
mitochondrial source of ROS) induces activation of ERK1/2 MAPK, which is essential for neutophil
apoptosis induced by live trophozoites of E. histolytica. The comprehension of the molecular signaling
mechanisms in the neutrophil apoptosis caused by E. histolytica can provide a better understanding of
the fine tuning systems in the host-parasite specific interaction, which can also be of large benefit for

treatment of host organisms involved in parasitic infections.
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