Effect of Excess Yttrium Additions on YBCO Thin Films Prepared by TFA-MOD Process

Seung-Yi Lee^a, Seul-A Song^a, Byung-Joo Kim^a, Jin-A Park^a, Ho-Jin Kim^a, Hee-Gyoun Lee^a, Jin ho Joo^b, Seog Heon Jang^b, Jai-Moo Yoo^c, Halder Pradeep^d, Gye-Won Hong^a

^a Korea Polytechnic University, Gyunggi-do, Korea
 ^b Sungkyunkwan University, Suwon, Korea
 ^c Korea Institute of Machinery and Materials, Changwon, Korea
 ^d Collage of NanoScale Science and Engineering, University at Albany, SUNY

YBa₂Cu₃O_{7-x} thin films were fabricated on LaAlO₃(100) substrate by TFA-MOD process via excess yttrium(0, 2.5, 5, 10, 15, 20 a/o) additions. Coating solution was prepared by adding extra amount of yttrium atoms into a stoichiometric(Y:Ba:Cu=1:2:3) TFA precursor solution. Results are presented concerning the influence of excess yttrium additions on the microstructure development and superconducting properties of YBa₂Cu₃O_{7-x} film. X-ray diffraction data showed that the Y₂O₃ was presented as a second phase when extra yttrium was added to the coating solution. The addition of excess yttrium affected little on T_c of YBa₂Cu₃O_{7-x} film. J_c was of YBCO film was enhanced with excess yttrium addition. J_c was increased with the addition of excess yttrium upto 15 a/o and maximum J_c of 2.25 MA/cm² at 77 K, self field was obtained. With further yttrium addition to 20 a/o, the decrease of J_c was observed. The entrapment mechanism of second phase particles in Y123 grains during the growth of Y123 grains is suggested.

keywords: excess yttrium, TFA-MOD, Jc, YBCO, flux pinning

Acknowledgement

This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.