Effects of Heat-treatment Parameters of YBCO Film by TFA-MOD Process Seok Hern Jang^a, Jun Hyung Lim^a, Kyu Tae Kim^a, Jin Sung Lee^a, Kyung Min Yoon^a, Jinho Joo^a, Hee-Gyoun Lee^b, Gye-Won Hong^b ^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Korea ^b The department of Electronic Engineering, Korea Polytechnic University, Siheung, Korea We fabricated YBCO coated conductors (CCs) by TFA-MOD process and evaluated microstructure, texture formation, and critical temperature (T_c) and current (I_c). YBCO precursor solution was synthesized using metal-trifluoroacetates and dip coated on LaAlO₃ (LAO) substrate. The phase formation and microstructure was characterized by X-ray diffraction and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The CC was heat-treated in various calcining temperatures $(370\,^{\circ}\text{C}-460\,^{\circ}\text{C})$ and firing temperatures $(750\,^{\circ}\text{C}-800\,^{\circ}\text{C})$. As fired at $775\,^{\circ}\text{C}$ for 4h, the CC had highest T_c of 90.5 K and I_c of 40 A/cm-width $(J_c=2.0\,^{\circ}\text{MA/cm}^2)$. Microstructural observation indicated that the second phase was effectively reduced and the full-width at half-maximum (FWHM) was approximately 7° under the optimum condition. keywords: critical current, pole-figure, TFA-MOD process, trifluoroacetates, YBCO coated conductor ## Acknowledgment This research(R-2004-0-194) was supported by a grant from Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea