Growth of Superconducting MgB₂ Fibers by a Diffusion Method J. H. Kim^a, H. R. Yoon^a, W. Jo*, J. W. Kim^b, and K. H. Kim^b ^a Department of Physics and Disvision of Nanosciences, Ewha Womans University, Seoul, Korea ^b Center for Strongly Correlated Materials Research and School of Physics, Seoul National University, Seoul, Korea Superconducting MgB₂ fibers are grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as-grown wires are characterized by scanning electron microscopy and energy dispersive x-ray analysis. The resulting wires have a diameter of about 100 μ m. Surface morphology of the fibers turns out to be strongly dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed over the cross-sectional area. Optimal conditions of uniform diffusion of Mg have been explored. Transport properties of the MgB₂ fibers are examined by a physical property measurement system. MgB₂ fibers grown at 900 °C for 2 hours show a superconducting transition at 39.8K with $\Delta T_c < 1.5$. Resistivity vs. temperature curves indicate that MgB₂ has $\rho(40K)$ =2.04 $\mu\Omega$ cm and $\rho(300K)$ = 29.50 $\mu\Omega$ cm. The electrical resistivity of the wires was measured in magnet field from 0T to 8T. From this measurement, it is estimated that the upper critical field H_{C2} at 4K is more than 9T. In addition, a small amount of magneto-resistance was detected at high magnetic fields. We will discuss potential applications of MgB₂ fibers for long-length superconducting wires keywords: MgB₂, fiber, morphology, composition, resistivity, and upper critical field * E-mail: wmjo@ewha.ac.kr