Effects of Wet-chemical Etching and Ion-milling on the Microwave Surface Resistance of YBa₂Cu₃O_{7-δ} Films S. J. Lee^a, W. I. Yang^a, E. K. Park^a, E. O. Choi^a, J. H. Lee^a, and Sang Young Lee^{a, b} ^a Department of Physics and Center for Emerging Wireless Transmission Technology, Konkuk University, Seoul 143-701, Korea ^b Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701, Korea Realization of a high critical current density (J_c) on the order of 10^6 A/cm² at 77 K for long thick, high-temperature superconductor (HTS)-coated conductors enabled to use the coated conductors for large-scale applications. However, depth profile studies on thick HTS films revealed degradation of J_c as the film thickness increased, for which wet-chemical etching or ion-milling were used to reduce the film thickness. We studied effects of wet-chemical etching and ion-milling on the intrinsic surface resistance of YBCO films grown on LaAlO₃ substrates. Wet-chemicals such as Br₂-MeOH and EDTA were used as the etchants. The intrinsic surface resistance of the YBCO films were measured by using a dielectric resonator method at temperatures of 7 - 88 K and the resonant frequency of ~ 8.5 GHz, which allowed studies on the effects of the wet-chemical etching and ion-milling within the measurement error of $\sim 5\%$. Discussion follows. keywords: etchant, film thickness, microwave surface resistance, YBCO film, dielectric resonator, Br₂-MeOH, EDTA, Ion-milling