SmBa₂Cu₃O_{7-δ} Thin Films Deposited on SrTiO₃ (100) Substrates by Pulsed Electron Beam and Pulsed Laser Depositions K. P. Ko^a, S. H. Song^a, S. H. Hong^a, K. J. Song^b, C. Park^a, S. H. Moon^a, and S. I. Yoo^a a School of Materials Science & Engineering, Seoul National University, Seoul, Korea b Superconducting Material Research Group, Korea Electrotechnology Research Institute, Changwon, Korea We report a successful fabrication of high- J_C SmBa₂Cu₃O_{7- δ}(SmBCO) thin films on SrTiO₃ (100) substrate by the pulsed electron beam deposition (PED) and Nd-YAG pulsed laser deposition (PLD) processes. Using the improved PED and Nd-YAG laser equipments, we have optimized the processing conditions by controlling the key parameters, including substrate temperature(Ts), ambient oxygen atmosphere(PO₂), accelerating voltage and repetition rate of electron beam, and the distance between target and substrate. Up to date, we have obtained high- J_C of over 1 MA/cm² from the SmBCO film by PED although PED has narrower processing window than those of PLD. In this presentation, we will report the processing-superconducting property relationship in these processes for a comparison. ## Acknowledgement This work was supported by a grant from the Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.