Three-dimensional Superconductivity and Vortex-glass Transition in La_{1.87}Y_{0.13}CuO₄

Hyun-Sook Lee^a, Heon-Jung Kim^a, Myung-Hwa Jung^b, Younghun Jo^b, Sung-Ik Lee^{a, b}

^a National Creative Research Initiative Center for Superconductivity and Department of Physics,

Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

^b Quantum Materials Lab., Korea Basic Science Institute, Daejeon 305-333, Republic of Korea

The angular dependence of the critical current density $(J_c(\theta))$ and the vortex glass transition temperature $(T_g(\theta))$ in $La_{1.87}Y_{0.13}CuO_4$ were measured at different fields and temperatures. Both $J_c(\theta)$ and $T_g(\theta)$ showed a strong angular variation, which is typical for anisotropic superconductors. The angular variation could be described by using the anisotropic three-dimensional Ginzburg-Landau theory. From our analysis, we were able to estimate the anisotropy ratio.

keywords: Anisotropy, vortex-Glass