Magnetism in Ni-W Textured Substrates for ReBCO Coated Conductors

K. J. Song*, ^a, Y. M. Park^a, J. S. Yang^a, S. W. Kim^a, R. K. Ko^a, H. S. Kim^a, H. S. Ha^a, D. W. Ha^a, S. S. Oh^a, C. Park^b, J. H. Joo^c, and C. J. Kim^d

^a Korea Electrotechnology Research Institute, Changwon, Korea
^b Seoul National University, Seoul, Korea
^c Sungkyunkwan Univesity, Suwon, Korea
^d Korea Atomic Energy Research Institute, Daejeon, Korea

The magnetic properties of a series of both annealed (biaxially textured) and as-rolled (non-textured) Ni- $_x$ W alloy tapes with compositions x=0,1,3, and 5 at.%, were studied. Characterization methods included XRD analyses to investigate the biaxial cube texturing of the annealed Ni-W alloy tapes and studies of the magnetization M for both annealed and as-rolled Ni-W alloy tapes. Both the isothermal mass magnetizations M(H) of a series of samples at different fixed temperatures and M(T) in fixed field, employing a PPMS-9 (Quantum Design), were measured. The Ni-W alloys have shown much reduced ferromagnetism as W-content x increases. Both the saturation magnetization M_{sat} and Curie temperature T_c decrease linearly with W-content x, and both M_{sat} and T_c go to zero at critical concentration of $x_c \sim 9.50$ at.% W.

keywords: Ni-W alloy tapes, mass magnetization, saturation magnetization, Curie temperature, critical concentration.

Acknowledgement

This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.