Growth of Superconducting Bi₂Sr₂CaCu₂O_{8+δ} (Bi-2212) Whiskers S. -Y. Oh^a, G. -S. Kim^a, S. -J. Kim^a, M. Nagao^b, T. Hatano^b ^a Cheju National University, Jeju, Korea ^b National Institute for Materials Science, Tsukuba, Japan Recent developments suggest that high-T_c superconducting whiskers are very useful in the fabrication of new electronic devices using intrinsic Josephson effects and related phenomena, such as Josephson plasma oscillations. Although a few of growing methods were introduced, the reproducible electrical transport characteristics of single-phase transition are not studied in detail. Here we used Te-doped precursor with the mixed pure powders Bi₂O₃, SrCO₃, CaCO₃, CuO and TeO₂ into the ratios of Bi₂Sr₂Ca₂Cu_{2.5}Te_{0.5}O_x. [Nagao et al, APL, 1999] The powders calcined three times at 760~820 °C in air. The calcined powders were pressed into pellets at 60 kN that were 10 mm diameter and 3 mm thickness. The pellets were set in a pure alumina boat and heat treated at 870 °C for 100 h in oxygen with flow rate of 150 ml/min. Whiskers have grown through the pellet surface form 2 to 4 mm in length. Whiskers were measured by resistance-temperature (R-T) characteristics, current-voltage (I-V) characteristics and X-ray diffraction (XRD) patterns. keywords: Bi₂Sr₂CaCu₂O₈₊₈ (Bi-2212), intrinsic Josephson effects, Te-doped precursor, single crystal whisker