Raman Spectroscopic Studies of YBa₂Cu₃O₇ Thick Films Grown by High-rate e-beam co-evaporation

Eunyoung Lee^a, Chung Won Seo^b, W. Jo^{a, c, *}, S. Yoon^{a, c, †}, Hyeonsik Cheong^b,
J. U. Huh^d, R. H. Hammond^d, and M. R. Beasley^d

^a Division of Nanosciences, Ewha Womans University, Seoul 120-750, Korea

^b Department of Physics, Sogang University, Seoul 121-742, Korea

^c Department of Physics, Ewha Womans University, Seoul 120-750, Korea

^d Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA

We present results of Raman spectroscopic studies of superconducting YBa₂Cu₃O₇ (YBCO) thick films grown by a high-rate electron-beam co-evaporation method. High-rate in-situ YBa₂Cu₃O_{7-x} (YBCO) film growth was demonstrated by means of the electron beam co-evaporation. Even though our oxygen pressure is low, ~ 5 x 10⁻⁵ Torr, we can synthesize as-grown superconducting YBCO films at a deposition rate of ~10 nm/s. Relatively high temperatures of around 900 °C was necessary in this process so far, and it suggests that this temperature at a given oxygen activity allows a Ba-Cu-O liquid formation along with an YBCO epitaxy. Local critical current density shows a clear correlation with local resistivity. It is shown by x-ray diffraction that the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Polarized Raman scattering is used to characterize optical phonon modes, oxygen content and second phases of the YBCO coated conductors at ~100 µm scale. Raman spectra of YBCO coated conductors of less transport quality often show extra peaks at ~300 cm⁻¹, ~600 cm⁻¹, ~630 cm⁻¹ although they all show various peak intensity of the apical oxygen mode at ~500 cm⁻¹, indicating presumably the different oxygen content. The information taken from the local measurement will be useful for optimizing process conditions.

keywords: Raman spectroscopy, YBCO thick films, e-beam evaporation

^{*} E-mail: wmjo@ewha.ac.kr † E-mail: syoon@ewha.ac.kr