Vortex Dynamics in Magnesium-diboride by ¹¹B NMR Kyuhong Lee^{a, +}, K. H. Kang^a, B. J. Mean^a, Moohee Lee^{a, *}, J. S. Rhee^b, B. K. Cho^b, J. S. Cho^c ^a Department of Physics, Konkuk University, Seoul 143-701, Korea ^b Center for Frontier Materials, Department of Materials Science and Engineering, GIST 500-712, Korea Vortex structure and dynamics for magnesium-diboride have been studied using pulsed NMR techniques. We have measured spectrum, shift, detuning frequency, and transverse relaxation rate $1/T_2$ of ^{11}B NMR for MgB₂ powder down to 4 K from room temperature under 1.8 T of external magnetic field. In the superconducting state, the spectrum shows the characteristic field distribution with diamagnetic shift and broad linewidth due to the imperfect penetration of magnetic field. $1/T_2$ results have a single peak with small change of the rate, contrary to the results of nickel borocarbides. Below 16 K, the shape of T_2 decay changes from Lorentzian to Gaussian. It indicates that the thermal fluctuation is reduced as temperature decreases and the vortex motion is smaller than nickel borocarbides. ^{*} Corresponding Author: mhlee@konkuk.ac.kr ⁺ Present address: Magnetic Resonance Team, KBSI, 52 Yeoeun-dong, Yusung-gu, Daejeon 305-333, Korea