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Abstract: In this paper, a robust receding horizon finite impulse response(FIR) filter is proposed for a class of linear

discrete time systems with uncertainty satisfying an integral quadratic constraint. The robust state estimation problem involves

constructing the set of all possible states at the current time consistent with given system input, output measurements and the

integral quadratic constraint.
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1. Introduction
An estimation problem deals with recovering some unknown

parameters or variables from measured information in phys-

ical or mathematical models. For the last 40 years, the es-

timation problem has been widely used in science and engi-

neering areas.

Among estimation problems, a state estimator which is

called the filter has been widely investigated and often com-

bined with control design. In state estimation problems, the

state variables are assumed to be unmeasurable and thus un-

known. Since the initial state information is itself a state, it

is reasonable to assume that the initial state information is

also unmeasurable and thus unknown.

In state space models with control inputs, filters for state

estimation can have a finite impulse response (FIR) structure

or an infinite impulse response (IIR). For the state xk at time

k, the linear FIR filter without a priori information on the

initial state can be represented in the following batch form:

x̂k|k=

k−1∑
i=k−N

Hk−iyi +

k−1∑
i=k−N

Lk−iui (1)

for some gains Hk−i and Lk−i [1], [2], [3]. The IIR filter

has a similar form as (1) with k −N replaced by the initial

time k0. For IIR and FIR filters, initial states are denoted

by xk0 and xk−N , respectively. It is noted that the linear

FIR filter (1) does not include an initial state term and its

gains Hk−i and Lk−i are independent of initial state infor-

mation, while the standard Kalman filter does include an

initial state term and its gains are dependent of initial state

information. As shown in (1), FIR filters utilize only finite

measurements and inputs on the most recent time interval

[k −N, k] called the receding horizon or the horizon, which

can avoid long processing time due to the large data sets in

case of IIR filters when time increases. The FIR structure

has inherent properties such as a bounded input-bounded

output (BIBO) stability and robustness against temporary

modeling uncertainties and round-off errors.
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The above mentioned papers, however, did not consider the

uncertain systems. But the filters require the robustness

with respect to the model uncertainty. There are some at-

tempts to investigate the robust Kalman filter [4], [5], [6],

[7], [8], which needs the assumption of known initial state.

In many cases, however, it may difficult to obtain the cor-

rect initial information because it may be costly and require

many experience. Therefore, in the current paper, a new ro-

bust FIR filter will be investigated that is called the reced-

ing horizon robust FIR (RHRF) filter, which is independent

on a priori information of the initial state. The RHRF fil-

ter represented in a batch form will be obtained by directly

solving an optimization problem with the integral quadratic

constraint.

The current paper is organized as follows. In Section 2, an

RHRF filter with a batch form is proposed and finally the

conclusions are stated in Section 3.

2. Receding Horizon Robust FIR Filter
Consider a linear discrete-time state space model:

xk+1 = (A + G∆1,kE1)xk + (B + G∆1,kE2)uk, (2)

yk = (C + ∆2,kE1)xk + ∆2,kE2uk (3)

where xk ∈ <n is the state, uk ∈ <l and yk ∈ <q are the

input and measurement, respectively; A, B, C, G, E1 and

E2 are given matrices with full row rank, ∆1,k and ∆2,k are

uncertainty matrices satisfying

∆T
1,kQ∆1,k + ∆T

2,kR∆2,k ≤ I, (4)

for all k and Q = Q′ > 0, R = R′ > 0.

Let

wk=∆1,k(E1xk + E2uk), (5)

vk=∆2,k(E1xk + E2uk). (6)

Then, the system represented by (2) and (3) is of the form:

xk+1 = Axk + Buk + Gwk, (7)

yk = Cxk + vk. (8)
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The uncertainty wk and vk in (7) and (8) satisfies the fol-

lowing inequality called integral quadratic constraint:

k−1∑
i=k−N

(wT
i Qwi + vT

i Rvi)

=

k−1∑
i=k−N

{[
∆1,i(E1xi + E2ui)

]T

Q

[
∆1,i(E1xi + E2ui)

]

+

[
∆2,i(E1xi + E2ui)

]T

R

[
∆2,i(E1xi + E2ui)

]}

=

k−1∑
i=k−N

(E1xi + E2ui)
T

[
∆T

1,iQ∆1,i + ∆T
2,iR∆2,i

]
(E1xi

+ E2ui)

≤
k−1∑

i=k−N

(E1xi + E2ui)
T (E1xi + E2ui) (9)

where the last inequality is obtained from (4).

The system (7) and (8) will be represented in a batch form

on the most recent time interval [k−N, k] called the horizon.

The horizon intial time k−N will be denoted by kN hereafter

for simplicity. On the horizon [kN , k], the finite number of

measurements is expressed in terms of the state xk at the

current time k as follows:

Yk−1 = C̄Nxk + B̄NUk−1 + ḠNWk−1 + Vk−1 (10)

where

Yk−1
4
= [yT

kN
yT

kN +1 · · · yT
k−1]

T , (11)

Uk−1
4
= [uT

kN
uT

kN +1 · · · uT
k−1]

T , (12)

Wk−1
4
= [wT

kN
wT

kN +1 · · · wT
k−1]

T , (13)

Vk−1
4
= [vT

kN
vT

kN +1 · · · vT
k−1]

T , (14)

and C̄N , B̄N , ḠN are obtained from

C̄i
4
=




CA−i

CA−i+1

CA−i+2

...

CA−1




=

[
C̄i−1

C

]
A−1, (15)

B̄i
4
=−




CA−1B CA−2B · · · CA−iB

0 CA−1B · · · CA−i+1B

0 0 · · · CA−i+2B
...

...
...

...

0 0 · · · CA−1B




=

[
B̄i−1 − C̄i−1A

−1B

0 − CA−1B

]
, (16)

Ḡi
4
=−




CA−1G CA−2G · · · CA−iG

0 CA−1G · · · CA−i+1G

0 0 · · · CA−i+2G
...

...
...

...

0 0 · · · CA−1G




=

[
Ḡi−1 − C̄i−1A

−1G

0 − CA−1G

]
, (17)

for 2 ≤ i ≤ N . C̄1, B̄1 and Ḡ1 are defined as

C̄1
4
=CA−1,

B̄1
4
=−CA−1B,

Ḡ1
4
=−CA−1G.

The noise term ḠNWk−1 + Vk−1 in (10) can be shown to be

zero-mean with covariance ΞN given by

Ξi
4
= Ḡi

[
diag(

i︷ ︸︸ ︷
Q · · · Q)

]
ḠT

i +
[
diag(

i︷ ︸︸ ︷
R · · · R)

]
(18)

With (13) and (14), the inequality (9) can be further repre-

sented by the following compact form:

W T
k−1QNWk−1 + V T

k−1RNVk−1 ≤ XT
k−1MNXk−1

+ XT
k−1SNUk−1 + UT

k−1NNUk−1 (19)

where

Xk−1
4
= [xT

kN
xT

kN +1 · · · xT
k−1]

T , (20)

Qi
4
=

[
diag(

i︷ ︸︸ ︷
Q · · · Q)

]
, (21)

Ri
4
=

[
diag(

i︷ ︸︸ ︷
R · · · R)

]
, (22)

Mi
4
=

[
diag(

i︷ ︸︸ ︷
ET

1 E1 · · · ET
1 E1)

]
, (23)

Si
4
=

[
2 · diag(

i︷ ︸︸ ︷
ET

1 E2 · · · ET
1 E2)

]
, (24)

Ni
4
=

[
diag(

i︷ ︸︸ ︷
ET

2 E2 · · · ET
2 E2)

]
. (25)

Let us define

J
[
xk, Wk−1

]

4
=

[
W T

k−1QNWk−1 + (Kk−1 − C̄Nxk − ḠNWk−1)
T

×RN (Kk−1 − C̄Nxk − ḠNWk−1)−XT
k−1MNXk−1

−XT
k−1SNUk−1 − UT

k−1NNUk−1

]
, (26)

where

Kk−1=Yk−1 − B̄NUk−1, (27)

and

Xk−1=ÂNxk + B̂NUk−1 + ĜNWk−1, (28)

with

Âi
4
=




A−i

A−i+1

A−i+2

...

A−1




=

[
Âi−1

I

]
A−1, (29)
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B̂i
4
=−




A−1B A−2B · · · A−iB

0 A−1B · · · A−i+1B

0 0 · · · A−i+2B
...

...
...

...

0 0 · · · A−1B




=

[
B̂i−1 − Âi−1A

−1B

0 −A−1B

]
, (30)

Ĝi
4
=−




A−1G A−2G · · · A−iG

0 A−1G · · · A−i+1G

0 0 · · · A−i+2G
...

...
...

...

0 0 · · · A−1G




=

[
Ĝi−1 − Âi−1A

−1G

0 −A−1G

]
, (31)

for 2 ≤ i ≤ N . Â1, B̂1 and Ĝ1 are defined as

Â1
4
=A−1,

B̂1
4
=−A−1B,

Ĝ1
4
=−A−1G.

Arranging (26) in terms of Wk−1 yields

J
[
xk, Wk−1

]

=W T
k−1(QN + ḠT

NRN ḠN − ĜT
NMN ĜN )Wk−1 − 2W T

k−1

×
[
ḠT

NRN (Kk−1 − C̄Nxk) + ĜT
NMN (ÂNxk + B̂NUk−1)

+ĜT
NSNUk−1

]
+W k−1, (32)

where W k−1 is the terms without Wk−1 and is as follows:

W k−1=(Kk−1 − C̄Nxk)T RN (Kk−1 − C̄Nxk)− (ÂNxk

+ B̂NUk−1)
T MN (ÂNxk + B̂NUk−1)− (ÂNxk

+ B̂NUk−1)
T SNUk−1 − UT

k−1NNUk−1

=xT
k

[
C̄T

NRN C̄N − ÂT
NMN ÂN

]
xk − xT

k

[
2C̄T

NRNKk−1

+ 2ÂT
NMN B̂NUk−1 + ÂT

NSNUk−1

]
+

[
KT

k−1RNKk−1

− (B̂NUk−1)
T MN (B̂NUk−1)− (B̂NUk−1)

T SNUk−1

− UT
k−1NNUk−1

]

=xT
k Φ1xk + 2xT

k Φ2 + Φ3 (33)

with

Φ1
4
=C̄T

NRN C̄N − ÂT
NMN ÂN , (34)

Φ2
4
=(C̄T

NRN B̄N − ÂT
NMN B̂N − 1

2
ÂT

NSN )Uk−1

− C̄T
NRNYk−1, (35)

Φ3
4
=Y T

k−1RNYk−1 − 2UT
k−1B̄

T
NRNYk−1 + UT

k−1(B̄
T
NRN B̄N

− B̂T
NMN B̂N − B̂T

NSN −NN )Uk−1. (36)

Let us define the following quantities for brevity:

P
4
=QN + ḠT

NRN ḠN − ĜT
NMN ĜN , (37)

F
4
=ḠT

NRN (Kk−1 − C̄Nxk) + ĜT
NMN (ÂNxk + B̂NUk−1)

+ĜT
NSNUk−1. (38)

Then, (32) can be rewritten as follows:

J
[
xk, Wk−1

]

=W T
k−1PWk−1 − 2W T

k−1F + xT
k Φ1xk + 2xT

k Φ2 + Φ3(39)

Now we are in a position to find out the corresponding set

χk

[
Y., U.

]
of all possible states xk at time k for the uncertain

system represented by (7) and (8). If and only if there exists

an uncertainty Wk−1 such that

J
[
xk, Wk−1

]
≤ 0, (40)

then xk ∈ χk

[
Y., U.

]
.

Let consider the following minimization problem to obtain

the set χk

[
Y., U.

]

min
Wk−1

J
[
xk, Wk−1

]
. (41)

As in [9], [10], (41) can be written as

min
Wk−1

J
[
xk, Wk−1

]
= (xk − x̂k|k)T Π−1(xk − x̂k|k)− ρk(42)

Recall that xT Px + 2xT q is minimized at x = −P−1q and

its optimal value is −qT P−1q.

Therefore,

J∗= min
Wk−1

J
[
xk, Wk−1

]

= min
Wk−1

[
W T

k−1QNWk−1 + (Kk−1 − C̄Nxk − ḠNWk−1)
T

×RN (Kk−1 − C̄Nxk − ḠNWk−1)−XT
k−1MNXk−1

−XT
k−1SNUk−1 − UT

k−1NNUk−1

]

=−F T P−1F + W k−1

=−
[
ḠT

NRN (Kk−1 − C̄Nxk) + ĜT
NMN (ÂNxk + B̂NUk−1)

+ĜT
NSNUk−1

]T

P−1

[
ḠT

NRN (Kk−1 − C̄Nxk) + ĜT
NMN

(ÂNxk + B̂NUk−1) + ĜT
NSNUk−1

]
+W k−1, (43)

when

Wk−1 =

[
QN + ḠT

NRN ḠN − ĜT
NMN ĜN

]−1[
ḠT

NRN (Kk−1

−C̄Nxk) + ĜT
NMN (ÂNxk + B̂NUk−1) + ĜT

NSNUk−1

]
. (44)

Because F in (38) can be rewritten as follows:

F
4
=ḠT

NRN (Kk−1 − C̄Nxk) + ĜT
NMN (ÂNxk + B̂NUk−1)

+ĜT
NSNUk−1

=Ψ1xk − (Ψ2Yk−1 + Ψ3Uk−1) (45)

2550



with

Ψ1
4
=ĜT

NMN ÂN − ḠT
NRN C̄N , (46)

Ψ2
4
=GT

NRN , (47)

Ψ3
4
=ĜT

NMN B̂N + ĜT
NSN − ḠT

NRN B̄N . (48)

Therefore,

J∗=−
[
Ψ1xk − (Ψ2Yk−1 + Ψ3Uk−1)

]T

P−1

[
Ψ1xk − (Ψ2Yk−1

+Ψ3Uk−1)

]
+xT

k Φ1xk + 2xT
k Φ2 + Φ3

=xT
k

[
Φ1 −ΨT

1 P−1Ψ1

]
xk + 2xT

k

[
ΨT

1 P−1(Ψ2Yk−1 + Ψ3Uk−1)

+Φ2

]
+

[
(Ψ2Yk−1 + Ψ3Uk−1)

T P−1(Ψ2Yk−1 + Ψ3Uk−1) + Φ3

]

=(xk − x̂k|k)T

[
Φ1 −ΨT

1 P−1Ψ1

]
(xk − x̂k|k)− ρk (49)

where

x̂k|k=−
[
Φ1 −ΨT

1 P−1Ψ1

]−1[
ΨT

1 P−1(Ψ2Yk−1 + Ψ3Uk−1) + Φ2

]

=−
[
Φ1 −ΨT

1 P−1Ψ1

]−1[
ΨT

1 P−1Ψ2Yk−1 + ΨT
1 P−1Ψ3Uk−1)

+(C̄T
NRN B̄N − ÂT

NMN B̂N − 1

2
ÂT

NSN )Uk−1 − C̄T
NRNYk−1

]

=−
[
Φ1 −ΨT

1 P−1Ψ1

]−1[
(ΨT

1 P−1Ψ2 − C̄T
NRN )Yk−1 + (ΨT

1

×P−1Ψ3 + C̄T
NRN B̄N − ÂT

NMN B̂N − 1

2
ÂT

NSN )Uk−1

]

=HYk−1 + LUk−1 (50)

with

H
4
=−

[
Φ1 −ΨT

1 P−1Ψ1

]−1(
ΨT

1 P−1Ψ2 − C̄T
NRN

)
(51)

L
4
=−

[
Φ1 −ΨT

1 P−1Ψ1

]−1

(ΨT
1 P−1Ψ3 + C̄T

NRN B̄N − ÂT
NMN B̂N

− 1

2
ÂT

NSN )Uk−1 (52)

and

ρk=−
[
(Ψ2Yk−1 + Ψ3Uk−1)

T P−1(Ψ2Yk−1 + Ψ3Uk−1) + Φ3

]

+x̂T
k|k

[
Φ1 −ΨT

1 P−1Ψ1

]
x̂k|k. (53)

Then the ellipsoid

χk =

{
xk : (xk − x̂k|k)T Σ−1(xk − x̂k|k) ≤ ρk

}
, (54)

with

Σ−1 = Φ1 −ΨT
1 P−1Ψ1 (55)

and x̂k|k, ρk in (50) and (53) respectively, is the set of of all

possible states at the current time consistent with given sys-

tem input, output measurements and uncertainties satisfying

the integral quadratic constraint.

3. Conclusion
In this paper, an integral quadratic constrained robust FIR

filter is proposed for a class of linear discrete time uncertain

systems. With the consideration of the system uncertainty,

the proposed FIR filter has better performance than the ex-

isting FIR filter for the unstable systems.
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