
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Two-Stage Estimator Design

Using Stable Recursive FIR Filter and Smoother

Jong-Ju Kim∗ , Jae-Hun Kim∗∗, and Joon Lyou∗∗∗

∗Agency for Defense Development, Yuseong P.O. Box 35-3, Taejeon 305-152, S. Korea

(Tel: +82-42-821-4412; Fax: +82-42-821-2224; Email: jjkim2261@hanmail.net)
∗∗Agency for Defense Development, Yuseong P.O. Box 35-1, Taejeon 305-152, S. Korea

(Tel: +82-42-821-3172; Fax: +82-42-821-2221; Email: kjh1132@hanafos.com)
∗∗∗Department of Electronics Engineering, Chungnam National University, Taejeon 305-764, S. Korea

(Tel: +82-42-821-5669; Email: jlyou@cnu.ac.kr)

Abstract: FIR(Finite Impulse Response) filter is well known to be ideal for the finite time state-space model, but it requires

much computation due to its inherent non-recursive structure especially when the measurement interval grows to a large extent.

And often a fixed-lag smoother based on the finite time interval is needed to monitor the soundness of the system model

and the measurement model, but the computation burden of FIR-type smoother imposes much restriction of its usage for

real-time application. Conventional recursive forms of FIR estimator[1]-[4] could not be used for real time applications, since

they are numerically unstable in their recursive equations. To cope with this problem, we suggest a stable recursive form FIR

estimator(SRFIR) and its usefulness is demonstrated for designing the real-time fixed-lag smoother on the finite time window

through an example of detection of rate bias in the anti-aircraft gun fire control system.
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Sub-optimal fixed-lag smoother, Anti-Aircraft Gun Fire Control System(AAGFCS)

1. Introduction
This paper deals with the problem of designing a recursive

form of FIR filter and smoother for discrete-time state-space

models with system noises. FIR filter has been known to be

ideal in the finite time-basis model which shows the charac-

teristics of BLUE(Best Linear Unbiased Estimator) with the

fast response time and the BIBO(Bounded Input/Bounded

Output) stability to the parameter changes[1]-[3]. However

its critical drawback lies in its inefficient computation capa-

bility due to its non-recursive structure.

Bruckstein[4] derived first a recursive form of the finite time

filter using the scattering theory and Kwon[1] later derived

a recursive form of FIR filter using the orthogonal property

of the estimated error to the measurement vector. But those

recursive forms include the numerically unstable components

in its smoother part and require re-initialization of the fil-

ter periodically to prevent divergence[1],[4],[5], which make

those algorithms difficult to use in real time applications.

So we suggested a stable recursive form of FIR filter which

could approximate the FIR filter of minimum variance[6]-[8].

For detection of rate measurement bias in the Anti-Aircraft

Gun Fire Control System(AAGFCS), we propose a new sub-

optimal fixed-lag smoother which shows the least computa-

tion, since it results from combining the stable recursive form

of FIR filter and FIR smoother using the information fusion

approach[9]-[11].

2. Recursive-form FIR Filter
Kwon[1] derived a recursive form FIR estimator(RFIR)

which uses the results of FIR filter (x̂(i|i; N)) and FIR

smoother(backward filter x̂(i−N |i; N)) simultaneously, and

it is expressed in a parametic form of the gains of FIR filter

and FIR smoother designed on the finite measurement win-

dow [i−N, i]. And the equation of RFIR is composed of two

coupled states of the forward FIR filter and backward FIR

filter. Since the gains of RFIR can be expressed in a para-

metric form, Kwon’s RFIR is introduced in this section. The

system model is a linear discrete time-invariant state-space

equation described as

x(i + 1)=Ax(i) + Bw(i) (1)

y(i)=Cx(i) + v(i) (2)

where x(i) ∈ Rn is the state vector for time index i,

w(i) ∈ Rp, v(i) ∈ Rm are zero mean white Gaussian noises

and mutually uncorrelated with variances of Q and R, re-

spectively. And w(i), v(i) are uncorrelated with initial state

x(0).

The recursive form of the augmented FIR filter and FIR

smoother has been given as follows[1]

X̂(i + 1; N)=L X̂(i; N) + K Y (i) (3)

where

X̂(i; N)=

[
x̂(i|i; N)

x̂(i−N |i; N)

]
(4)

Y (i)=

[
y(i)

y(i−N)

]
(5)

L=

[
L11L12

L21L22

]
(6)

K=

[
K11K12

K21K22

]
(7)

Each component of the matrix L and K is defined as follows

L11=M1, L12 = M1H(N)CM2
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L21=−G(0)CA, L22 = M3

K11=H(0), K12 = −M1H(N)[I + CM2G(N)]

K21=G(0), K22 = G(0)CAH(N)−M3G(N)

where

M1= [I −H(0)C]A

M2= [I −G(N)C]−1

M3= [P̄−1(0)A−G(0)CAH(N)] M2

P̄ (0)=I −BQBT P−1(0)

And the gain matrices G(0), H(0), G(N), and H(N) are

determined by the recursive algorithm suggested in [1].

3. A Stable RFIR
The RFIR described in the previous section implies an un-

stable part, and the eigenvalues of L22 are located outside

the unit circle. We proposed a stabilizing solution to this

RFIR in [8] , and summarize the results in this section.

The computation of RFIR through the equation of (3) can

not be perfect considering possible computation error exist-

ing in the real world. If there exists some error during com-

putation of the estimate, then the computed state diverges

from the true value due to instability of L22. Considering this

effect the introduction of the random error into the smoother

part can be used to construct a stable estimator while taking

RFIR itself as a unstable plant. Therefore the system model

for SRFIR(Stable RFIR) is taken as

X̂(i + 1; N)=L X̂(i; N) + K Y (i) + Ū(i) (8)

where Ū(i) =

[
0

u(i)

]
is added to reflect the modelling er-

ror of the equation. Here we take u(i) as a zero-mean white

gaussian vector ,which has no correlation with w(i), v(j) and

x(0) for all i, j , with covariance of E[u(i)u(i)T ] = Qc. Fur-

ther Qc can be taken arbitrarily so that (L22,
√

Qc) may meet

the controllable condition.

To construct the estimator, the measurement equation at

time i−N can be used as

y(i−N)=Cx(i−N) + v(i−N) (9)

In (8) and (9) if (C, L22) meets the observable condition we

can construct the stable state estimator for the RFIR such

as

X̄(i+1)=LX̄(i)+KY (i)+λ̄[y(i−N)−ȳ(i−N)] (10)

ȳ(i−N)=C̄X̄(i) (11)

where

λ̄=

[
0

λ

]
, C̄ =

[
0 C

]
(12)

In fact the observable condition of (C, L22) was proved us-

ing the equation of L22[8]. The error equation of SRFIR is

obtained by subtracting (10) from (8) such that

ẽ(i + 1) ≡ X̂ − X̄ = (L− λ̄ C̄) ẽ(i)− λ̄ v̄(i) + Ū(i) (13)

where v̄(i) = y(i−N)− ȳ(i−N)

Taking expectation of above equation we can get the mean

equation of the estimator such that

Me(i + 1) = (L− λ̄C̄)Me(i) (14)

And the covariance equation can be derived as follows

P̃e(i + 1) = L̄P̃e(i)L̄
T + λ̄R̄λ̄T + Q̄ (15)

−L̄E[ẽ(k)v̄(i)T ]λ̄T − λ̄E[[v̄(i)ẽ(i)T ]L̄T

+L̄E[ẽ(i)Ū(i)T ] + E[Ū(i)ẽ(i)T ]L̄T

−E[Ū(i)v̄(i)T ]λ̄T − λ̄E[v̄(i)Ū(i)T ]

where

L̄=L− λ̄C̄

R̄=E[v̄(i−N)v̄(i−N)T ]

Q̄=

[
0 0

0 Qc

]

Similar to [8] all the correlation terms can vanish using

the asymptotically zero mean property of the error and non-

correlation condition of u(i) with other variables. Hence the

covariance equation can be simply represented by

P̃e(i + 1)=L̄ P̃e(i)L̄
T + λ̄R̄λ̄T + Q̄ (16)

The above equation is the well-known Lyapunov equa-

tion, and from the Kalman filter theory the limiting positive

definite optimal covariance exists if and only if the unsta-

ble component of L belongs to the observable and control-

lable subspace by the measurement and the system model

error(process noise), respectively[9]. From the fact that

(L22,
√

Qc) can be arbitrarily taken to meet the controllable

condition and (C, L22) meets observable condition only if

(C, A) meets the observable property, the limiting positive

definite covariance exists.

To find the optimal weight matrix of λ we choose the per-

formance index as the minimum covariance, that is the trace

of the covariance of the estimate error. It can be derived as

following.

P̃e(i + 1) =

[
L11 L12

L21 L22−λC

]
P̃e(i)

[
L11 L12

L21 L22−λC

]T

(17)

+

[
0 0

0 λR̄λT

]
+

[
0 0

0 QT
c

]

The trace of the covariance is J(λ) = trace(P̃e(i+1)). And

the variation of J with respect to λ can be written by

δJ(λ) = 2tr

[
0 0

0 −δλC

]
P̃e(i)

[
L11 L12

L21 L22−λC

]T

(18)

+

[
0 0

0 δλR̂λT

]

=−2trδλ[C{P̃21(i)L
T
21+P̃22(i)(L

T
22−CT λT )}−R̄λT ]

For δJ(λ) = 0, it follows that

λ = (L21P̃21(i)
T + L22P̃22(i)

T )CT (CP22C
T + R̄)−1 (19)
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To reduce the computation burden, we can use a constant

weight matrix which can be computed beforehand. It is well-

known that the constant weight matrix also ensures stability

but results in some degraded performance during the tran-

sition period. To complete the SRFIR design, we have to

determine the amount of variance of the system model error

(Qc),normally it is called the procedure of ”filter tuning”.

Through this procedure we can achieve the optimal perfor-

mance of SRFIR.

By the way the above covariance means just the covariance

of the relative error between the FIR filter and the SRFIR,

it is necessary to compute the amount of the real covariance

of the error between the true state(X(i)) and the estimate of

SRFIR (X̄(i)). We can describe the relation here as following

Let’s denote

ē(i) = X(i)− X̄(i) (20)

ê(i) = X(i)− X̂(i) (21)

ẽ(i) = X̂(i)− X̄(i) (22)

Then

PSRFIR(i) = E[ē(i)ē(i)T ] (23)

PFIR(i) = E[ê(i)ê(i)T ] (24)

Pe(i) = E[ẽ(i)ẽ(i)T ] (25)

And it follows that

ē(i)=X(i)− X̄(i) (26)

=[X(i)− X̂(i)] + [X̂(i)− X̄(i)]

=ê(i) + ẽ(i)

Hence

PSRFIR(i)=E[ē(i)ē(i)T ] (27)

=E[ê(i) + ẽ(i)][ê(i) + ẽ(i)]T

=E[ê(i)ê(i)T + ẽ(i)ẽ(i)T

+ê(i)ẽ(i)T + ẽ(i)ê(i)T ]

Using the fact that the error of FIR filter is orthogonal to

the measurement vector and X̄(0)[1], it can be shown that

in the steady state condition,

lim
i→∞

E[ê(i)ẽ(i)T ]= lim
i→∞

E[ê(i)X̂(i)T ] (28)

− lim
i→∞

E[ê(i)X̄(i)T ]

=0

Therefore the following relation holds true for the steady

state

PSRFIR(∞) = PFIR(∞) + Pe(∞) (29)

4. A suboptimal fixed-lag smoother using
SRFIR

The state of RFIR is made up of two state vectors which are

jointly coupled each other by the equation of RFIR written

in (3). That is

X̂(i)=

[
x̂(i|i; N)

x̂(i−N |i; N)

]
(30)

The measurement window of RFIR corresponds to [i−N, i].

We can simply construct the N -frame fixed-lag smoother ex-

ploiting the structure of RFIR. Let the estimate and covari-

ance of the filter and the smoother for the time i − N as

xf (i−N), Pf (i−N) and xs(i−N), Ps(i−N), respectively.

The optimal smoother can be derived through combining the

information of the filter and smoother to meet the statisti-

cally optimal criterion such as the least square method or the

information fusion[9],[10]. Hence the equation of N -frame

fixed-lag smoother defined in the time interval [i−2N, i] can

be given as following[6]

x∗(i−N)=P (i−N)[P−1
f (i−N)xf (i−N) (31)

+P−1
s (i−N)xs(i−N)]

where

P−1(i−N)=P−1
f (i−N) + P−1

s (i−N) (32)

Replacing the equation of RFIR as that of SRFIR we can

get the suboptimal fixed-lag smoother which is numerically

efficient combining the recursive equation of SRFIR. The

computational advantage of the proposed fixed-lag smoother

can be utilized maximally for real time computation in a

suboptimal sense.

5. Two Stage Estimator
We consider a problem of estimating target states in the anti-

aircraft gun fire control system. If rate measurement sensor

becomes biased under some operational situation, the bias

can be eliminated by the estimator which uses the position

measurement only combining it with the detection mecha-

nism of the rate estimate bias[6]. However when the target

model changes from the presumed model, it is not easy for

the conventional-type filter which uses position measurement

only to track the variable model properly and to eliminate

the rate bias at the same time. The position filter has more

elimination capability of the measurement noise proportional

to the size of the time window, but it needs to have smaller

window to be able to adapt to the model change. When the

window size is reduced to deal with the increased dynamic

bandwidth, it shows ill side-effects of differentiation rather

than smoothing of measurement noise, for it is less aided by

the information of the model dynamic.

But if we use the noncausal estimator such as the fixed-lag

smoother based on the finite time model, it can solve the

above two problems at a time even though the estimate is

performed not at the current time but at the past time. The

smoother can reject the dynamic model bias at the delayed

time point, for it can estimate the model uncertainty from

the time point of estimation to the current time point helped

by the measurement information[9],[12]. Also it can achieve

the good measurement noise rejection due to the increased
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information from past and future measurements simultane-

ously.

Nevertheless the fixed-lag smoother suffer time delay prob-

lem and it can not provide the current time estimate prop-

erly. So we take two different estimators. One is the FIR

filter using position and velocity(PVFIR), which is used as

a main target state estimator(MTSE). The other one is the

SRFIR-type fixed-lag smoother using only position, which is

used as an auxiliary target state estimator(ATSE) to com-

pute the rate estimate error of MTSE. In case that the rate

bias is sufficiently slowly time varying compared with the

fixed-lag time interval of the smoother, we can effectively

compensate for the PVFIR filter by scaling the computed

rate bias using the weight between 0 and 1.0 depending on

the changing speed of the rate bias. See Figure 1 for the

structure of this two stage estimator.

Fig. 1. Structure of Two Stage Estimator

5.1. Main Target State Estimator(MTSE)

The main target state estimator is designed to take the form

of FIR filter which uses both position and velocity measure-

ments in the interval of [i−N, i]. The filter model is defined

in (1) and (2), and the size of measurement window(N) and

the variance of the system model uncertainty(Q) is chosen

simultaneously to minimize the covariance of the filtered esti-

mate referenced to the given real system once the variance of

the measurement sensor(R) is known a priori(filter tuning).

To use unit variance matrix(I) instead of R, the measure-

ment equation can be easily re-scaled for symmetric positive

definite R matrix by using the decomposition of R = ΛT Λ

[11].

The information of the initial filter state is considered as

unknown zero while computing the FIR filter gain [1]-

[3],[9],[11]. The estimate of the FIR filter using position and

velocity(PVFIR) is given as

x̂(i; N) =

N∑
l=0

H(l)y(i− l) (33)

The filter gain can be computed by the algorithm suggested

by [1]-[3],[6]-[8].

5.2. Auxiliary Target State Estimator(ATSE)

The ATSE is utilized to monitor and eliminate the bias of

the rate estimate in the MTSE. This estimator, which takes

the form of SRFIR fixed-lag smoother, can be easily designed

by incorporating the SRFIR filter and the SRFIR smoother

which are given in Section 4 using the information fusion ap-

proach[9],[11].

5.3. Comparison with the conventional fixed-lag

smoother

Most of the conventional fixed-lag smoothers are designed

using the all past measurement data of time interval [0, i],

deriving from the Kalman filter equations[9]-[11]. Such fixed-

lag smoother can also be represented by the equation of (25)

combining the two kinds of information[9],[10], replacing the

forward filter by the Kalman filter which compute the filtered

estimate at i− 2N using [0, i− 2N ] measurement data, and

keeping the backward filter the same as the aforementioned

FIR smoother.

However when the system model changes frequently, the per-

formance of the conventional smoother may be poorer than

that of FIR-type fixed-lag smoother which is based on the

finite-time model. This is demonstrated by an example dur-

ing review of simulation in the next section.

6. Simulation Results
The real measured target path is used to assess the effec-

tiveness of the target state estimator. The target is a small

remotely-controlled aircraft for test purpose, and it is often

under the effect of wind or short period of maneuver. Dur-

ing simulation the sampling time T is 0.02 second, and N is

chosen to be 16 points for MTSE and 64 points for ATSE

(32 points each for FIR filter and smoother, respectively)

from compromise between the performance and computa-

tional ease. Q has been tuned for the Kalman filter and the

same value is used for FIR estimator, and R is selected unity

taking the appropriate dimension.

We used the error of the aim point as a performance criteria

to evaluate the effectiveness of the target state estimator

in this simulation. Figure 2 shows the flight path in 3D

space, and Figure 3 shows the time of flight that is used for

prediction of the aim point.

Fig. 2. 3D Target moving path
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Fig. 3. Time of flight

The errors of the fixed-lag smoothers between the conven-

tional type and SRFIR type are shown in Figure 4(azimuth)

and Figure 5(elevation).

Figure 4, Figure 5:

1: SRFIR fixed-lag smoother

2: Conventional fixed-lag smoother

Fig. 4. Error of fixed-lag smoothers(azimuth)

Fig. 5. Error of fixed-lag smoothers(elevation)

The proposed SRFIR fixed-lag smoother shows the superior

performance to the conventional type which uses the all past

measurements and can be regarded as the suboptimal fixed-

lag smoother(SFS), since the latter one assumes the fixed

system model(constant acceleration model) during the en-

tire past period while the real motion conforms to the fixed

model assumption only for a short duration. The difference

of performance is contrasted in azimuth direction, for the

target conducts the geometric turn mostly in such direction.

In Figure 6(azimuth) and Figure 7(elevation), the aim point

error of the proposed two stage estimator is compared with

that of the other kind Kalman filters.

Figure 6, Figure 7:

1: FIR fixed-lag smoother; ATSE

2: Main FIR filter(PVFIR, CA); MTSE

3: Two stage estimator(PVFIR, CA)

4: Kalman filter(PVKF, CV)

5: Kalman filter(PVKF, CA)

Fig. 6. Error of aim point(azimuth)

Fig. 7. Error of aim point(elevation)

The FIR filter using position and velocity based on the ac-

celeration model which uses position and rate measurement

shows the best performance compared with all Kalman fil-

ters such as PKF(position measurement) + CV(constant

velocity model), PKF + CA(constant acceleration model),

PVKF(position and velocity measurement) + CV, PVKF +

CA in most of tracking time. However all filters including

PVFIR show the aiming bias in the nearest crossing path

due to mostly rate sensor bias. In this case the PVFIR

+ SFS(suboptimal fixed-lag smoother) can compensate the

rate sensor bias well, and we can find the improved perfor-

mance in Figures 6 and 7. The computed rate bias is made

by comparing the rate estimate between PVFIR and SFS,

and it is scaled down to half (0.5) and added to the current

rate estimate of the MTSE considering the time varying ef-

fect of the rate estimate bias.
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7. Conclusion
A two-stage estimator has been proposed which can achieve

the fast tracking capability and eliminate the rate measure-

ment bias at the same time. For the fast tracking capa-

bility we use the FIR-type main tracking filter which uses

the position and rate measurement as well. To cancel the

estimated rate bias error of the main filter when the rate

measurements go biased, the second fixed-lag smoother us-

ing the position measurement only but using the wider mea-

surement interval than the main filter has been used parallel

to the main filter. To reduce the amounts of computation of

the fixed-lag smoother, we proposed a suboptimal fixed-lag

smoother using a stable recursive form FIR filter devised by

ourselves. Through an application to the anti-aircraft gun

fire control system, usefulness of our two-stage estimator has

been demonstrated.
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