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Abstract: In this paper, we present a complete isotropy analysis of a caster wheeled omnidirectional mobile 
robot(COMR) with nonredundant/redundant actuation.  The motivation of this work is that the omnidirectional mobility 
loses significance in motion control unless the isotropy characteristics is maintained well.  First, with the characteristic 
length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel 
velocities.  Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful 
vector quantities which describe the wheel configurations.  Third, for all possible nonredundant and redundant actuation 
sets, the algebraic expressions of the isotropy conditions are derived to completely identify the isotropic configurations of 
a COMR.  Fourth, the number of the isotropic configurations and the characteristic length required for the isotropy are 
discussed.
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1. INTRODUCTION
  The omnidirectional mobility of a mobile robot is 
required to navigate in daily life environment which is 
restricted in space and cluttered with obstacles.  Several 
omnidirectional wheel mechanisms have been proposed, 
including universal wheels, Swedish wheels, orthogonal 
wheels, ball wheels, and so on.  Recently, caster wheels 
were employed as a practical and effective means to 
develop an omnidirectional mobile robot at Stanford 
University, which was later commercialized by Nomadic 
Technologies as XR4000 [1].  Since caster wheels do 
without small peripheral rollers or support structure, a 
caster wheeled omnidirectional mobile robot or a COMR 
can maintain good performance at varying payload or 
ground condition.  However, the omnidirectional mobility 
of a COMR cannot gain  significance in motion control, 
unless the isotropy characteristics is maintained well.
  There have been several works on the kinematic issues 
of a COMR.  For a general form of wheeled mobile 
robots, a systematic procedure for kinematic modeling 
was developed [2].  In view of the minimal admissible 
actuation, it was shown that at least four joints out of 
two caster wheels should be actuated to avoid the 
singularity [3].  For some specific actuation sets, the 
global isotropy characteristics over the entire 
configuration was considered to obtain the optimal design 
parameters of the mechanism [4].  For representative 
actuation sets, the algebraic conditions for the (local) 
isotropy was derived to identify the isotropic 
configurations [5].  On the other hand, for an 
omnidirectional mobile robot employing Swedish wheels, 
the isotropy analysis was made but the results are 
incomplete and need further elaboration [6].
  The purpose of this paper is to completely identifies 
the isotropic configurations of a COMR with 
nonredundant/redundant actuation.  This paper is 
organized as follows.  With the characteristic length 
introduced [6], Section 2 obtains the kinematic model 
based on the orthogonal decomposition of the wheel 
velocities.  Section 3 gives a general form of the 
isotropy conditions in terms of physically meaningful 
vector quantities describing the wheel configurations.  For 
all possible nonredundant and redundant actuation sets, 
Section 4 and 5 derive the algebraic expressions of the 

isotropy conditions to identify the isotropic configurations.  
Section 6 discusses the number of isotropic configurations 
and the characteristic length required for the isotropy.  
Finally, the conclusion is made in Section 7.

 
2. KINEMATIC MODEL

  Consider a COMR with three caster wheels attached to 
a regular triangular platform moving on the xy plane, as 
shown in Fig. 1.
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Fig. 2 A caster wheeled omnidirectional mobile robot. 

  Let l be the side length of the platform with the 
center Ob, and three vertices, Oi, i=1,2,3.  For the 

i
th caster wheel with the center Pi, i=1,2,3, we 

define the following.  Let di and r i be the length of 
the steering link and the radius of the wheel, 
respectively.  Let θ i and ϕ i be the angles of the 
rotating and the steering joints, respectively.  Let u i and

v i be two orthogonal unit vectors along the steering 
link and the wheel axis, respectively, such that

u i=[ ]- cosϕ i
-sinϕ i

,  v i=[ ]- sinϕ i
cosϕ i

(1)

Note that

u i u i
t
 + v i v i

t
 = I 2 (2)

∑ u i = 0  ⇔  ∑ v i = 0 (3)

where I is the identity matrix and 0 is the zero vector.  
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Let p i be the vector from Ob to Pi, and q i be the 
rotation of p i by 90 o counterclockwise.  Note that

∑ q i = 0  ⇔  ∑ p i = 0 (4)

∑
3

1
p i = 0  ⇔  ∑

3

1
u i = 0 (5)

  Let v and ω be the linear and the angular velocities 
at Ob of the platform, respectively.  For the i th caster 
wheel, i=1,2,3, the linear velocity at the point of 
contact with the ground can be expressed by

v+ω q i= r i θ i̇ u i+ d i ϕ i ̇ v i, i=1,2,3 (6)

Premultiplying (6) by u i
t and v i

t, we have

u i
t
v + u i

t
q i ω =  r i θ i̇,   i=1,2,3 (7)

v i
t
v + v i

t
q i ω =  d i ϕ i ̇,   i=1,2,3 (8)

   Assume that n (3≤n≤6) joints of a COMR are 
actuated.  With the characteristic length, L(> 0), 
introduced [6], the kinematics of a COMR can be written 
as

A ẋ = B Θ̇ (9)

where ẋ = [ v Lω ] t ∈ R
3×1 is the task velocity 

vector, and Θ ̇ ∈ R
n×1 is the joint velocity vector, and

A =  

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳

g1
t
  

1
L

g1
t
h 1  

⋯  ⋯  

g n
t
  

1
L

g n
t
h n  

 ∈ R
n×3 (10)

B =  
ꀎ

ꀚ

︳︳︳︳

ꀏ

ꀛ

︳︳︳︳

 c 1 … 0 
 ⋯ ⋱ ⋯ 
 0 … cn 

 ∈ R
n×n (11)

are the Jacobian matrices.  In (10), g k, k=1,…,n, 
corresponds to either u i or v i, i=1,2,3, while

h k, k=1,…,n, corresponds to q i, i=1,2,3.  In 
(11), c k, k=1,…,n, corresponds to either r i or 
d i , i=1,2,3.  It should be mentioned that the 
introduction of the characteristic length L makes all 
three columns of A to be consistent in physical unit.
  The expressions of g k

t
h k, k=1,…,n, can be 

simplified as follows.  In the case of the rotating joint 
for which g k = u i and h k = q i, i=1,2,3,  

g k
t
h k = u i

t
q i = v i

t
p i (12)

And, in the case of the steering joint for which
g k = v i and h k = q i, i=1,2,3,

g k
t
h k = v i

t
q i = - u i

t
p i (13)

It is worthwhile to mention that our kinematic modeling 
of a COMR does not involve matrix inversion, unlike the 
transfer method in [4].  For a given task velocity, the 
instantaneous motion of the wheel is decomposed into 
two orthogonal components: the instantaneous motion of 
the rotating joint and the instantaneous motion of the 
steering joint.  The resulting kinematic model allows us 
to perform a geometric and intuitive analysis on the 
isotropy of a COMR.

3. ISOTROPY CONDITIONS
  Based on (9), the isotropy conditions of a COMR can 
be stated as

A
t
A ∝ I3 (14)

B ∝ I6 (15)

  From (11) and (15), the isotropy condition on B is 
obtained by
ck = d >  0,  k=1,…,n (16)

(16) indicates that three caster wheels should be identical 
to have the steering link length equal to the wheel 
radius.
  From (10) and (14), the isotropy condition on A is 
obtained by

A
t
A = 

n
2
I 3 (17)

which leads to the following three conditions:

C1 :   ∑
n

1
g k g k

t
 =  

n
2
I 2  ∈ R

2×2

C2 :   ∑
n

1
( g k

t
h k ) g k = 0  ∈ R

2×1

C3 :   
1

L
2 ∑
n

1
( g k

t
h k )

2 =  
n
2
  ∈ R

1×1

(18)

In general, C1 and C2 correspond to three and two 
scalar constraints, respectively, which are imposed on 
three steering joint angles, ϕ k, k=1,2,3.  Thus, the 
isotropy of a COMR can occur only at specific values of 
ϕ k, k=1,2,3, called isotropic configurations, for which

C1 and C2 are satisfied simultaneously.  For a given 
isotropic configuration, C3, corresponding to one scalar 
constraint, determines the characteristic length required for 
the isotropy, denoted by L iso

.
  In what follows, it is assumed that a COMR has three 
identical caster wheels having the steering link length 
equal to the wheel radius.

4. ISOTROPY ANALYSIS FOR 
NONREDUNDANT ACTUATION

4.1 Nonredundant Actuation Sets

  A COMR with nonredundant acuation can have three 
actuated joints (n=3), each of which can be either 
rotating or steering one.  According to the number of 
active wheels and the combination of actuated joints, all 
possible nonredundant actuation sets, Θ, can be divided 
into three groups, denoted by NAG I, II, and III, as 
listed in Table 1.

Table 1 Three nonredundant actuation groups.
Number 

of 
actuated 

joints

Number 
of 

active 
wheels

Actuation set Nonredundant 
actuation group

n=3

3

Θ= {θ1,θ2,θ3} NAG I
Θ= {ϕ1,ϕ2,ϕ3}

Θ= {ϕ1,θ2,θ3} NAG II
Θ= {ϕ1,ϕ2,θ3}

2
Θ= {θ1,ϕ1,θ2} NAG III
Θ= {θ1,ϕ1,ϕ2}
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4.2 Isotropy Analysis for NAG I

  Consider Θ= {θ1,θ2,θ3} where three rotating joints of 
three caster wheels are actuated, for which
[ g 1 g 2 g 3 ]= [ u 1 u 2 u 3 ].  

  Under the condition of C1, we have

∑
3

k= 1
u k u k

t
 =  1.5 I 2 (19)

which is

c 1
2
+ c 2

2
+ c 3

2
= 1.5

c 1s 1+c 2s 2+c 3s 3 = 0.0
(20)

where c k= cos (ϕ k) and s k= sin (ϕ k), k=1,2,3 .
  There are eight different distributions of 
{ u k,k=1,2,3 }  satisfying (20), which can be divided 

into two distinctive groups characterized, respectively, by

ϕ2=ϕ1+
2
3
π, ϕ1-

π
3
, ϕ3=ϕ1+

π
3
, ϕ1-

2
3
π (21)

ϕ2=ϕ1+
π
3
, ϕ1-

2
3
π, ϕ3=ϕ1+

2
3
π, ϕ1-

π
3

(22)

as shown in Fig. 2.  The first group of four 
distributions, characterized by (21), is common in that
u 1 , u 2 , and u 3  lie on three sides of a regular 

triangle in counterclockwise order, as shown in Fig. 2a).  
On the other hand, the second group of four 
distributions, characterized by (22), is common in that
u 1 , u 2 , and u 3  lie on three sides of a regular 

triangle in clockwise order, as shown in Fig. 2b).
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Fig. 2 Two distinctive groups of the distributions of 
{ u k,k=1,2,3 }: a) counterclockwise order and      

b) clockwise order.

  Under the condition of C2, we have

∑
3

1
( u k

t
q k ) u k =  ∑

3

1
( v k

t
p k ) u k = 0 (23)

which is equivalent to

∑
3

1
( v k

t
p k ) v k =  ∑

3

1
 α k v k = 0 (24)

where α k = v k
t
p k, k=1,2,3 , is the projection of

p k  onto v k .  For the first group of four distributions 
characterized by (21), it can be shown that [5]
|α 1| = |α2| = |α3| = α (25)

α 1 v 1 + α2 v 2 + α3 v 3 = 0 (26)

  Since C1 places two scalar constraints, given by (20), 
but C2 does not place additional constraint on three 
variables, ϕ1, ϕ2 and ϕ3, there exist infinite number of 
isotropic configurations in general.  Fig. 3a) illustrates an 
isotropic configuration of a COMR, where three steering 
links form a regular triangle centered at the platform 
center, which is inscribed by a circle of radius α.  
  On the other hand, it can be shown that the second 

group of four distributions characterized by (22) cannot 
satisfy (24), so that the isotropy of A cannot be 
achieved.  

1u

1v

2u

3u

2v

3v

1p

2p

3p

33
t
3 )up(u

22
t
2 )up(u

11
t
1 )up(u1u

1v

2u

3u

2v

3v

1p

3p

 

33
t
3 )vp(v

22
t
2 )vp(v11

t
1 )vp(v

2p

a) b)

Fig. 3 Isotropic configurations for NAG I: 
a) Θ= {θ1,θ2,θ3} and b) Θ= {ϕ1,ϕ2,ϕ3}.

  Similar analysis to the above can be made for
Θ= {ϕ1,ϕ2,ϕ3} where three steering joints of three 

caster wheels are actuated.  Fig. 3b) illustrates an 
isotropic configuration of a COMR, where three wheel 
axes form a regular triangle centered at the platform 
center, which is inscribed by a circle of radius 
β(= | u 1

t
p 1 |= | u 2

t
p2 |= | u 3

t
p 3 |).

4.3 Isotropy Analysis for NAG II

  Consider Θ= {ϕ1,θ2,θ3} where one steering and two 
rotating joints of three caster wheels are actuated, for 
which [ g 1 g 2 g 3 ]= [ v 1 u 2 u 3 ].  
  First, under C1, we have

v 1 v 1
t
 + u2 u 2

t
 + u 3 u 3

t
 =  1.5 I 2 (27)

Next, under C2, we have

( v 1
t
q 1 ) v 1+ ( u 2

t
q 2 ) u 2+ ( u 3

t
q 3 ) u 3= 0 (28)

or

( u 1
t
p 1 ) u 1+ ( v 2

t
p 2 ) v 2+ ( v 3

t
p 3 ) v 3= 0 (29)

With (27) being held, it can be shown that (29) cannot 
be satisfied unless d is equal to zero [5].  This tells 
that the isotropy of A can be achieved only when caster 
wheels reduce to conventional wheels without steering 
link.  Fig. 4a) illustrates an isotropic configuration of a 
conventional wheeled mobile robot.
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Fig. 4 With d=0, isotropic configurations for NAG II: 
a) Θ= {ϕ1,θ 2,θ3} and b) Θ= {ϕ1,ϕ2,θ 3}.

  Similar analysis to the above can be made for
Θ= {ϕ1,ϕ2,θ3} where two steering and one rotating 

joints of three caster wheels are actuated.  Fig. 4b) 
illustrates an isotropic configuration of a conventional 
wheeled mobile robot.
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4.4 Isotropy Analysis for NAG III

  Consider Θ= {θ1,ϕ1,θ2} where both rotating and 
steering joints of one caster wheel and the rotating joint 
of another caster wheel are actuated, for which 
[ g 1 g 2 g 3 ]= [ u 1 v 1 u 2 ].  

  First, under C1, we have

u 1 u 1
t
 + v1 v 1

t
 + u 2 u 2

t
 =  1.5 I 2 (30)

which is

c 2
2
 =  0.5,   c 2s 2 =  0.0 (31)

There does not exist ϕ2  satisfying (31), and the isotropy 
of A cannot be achieved at all.  
  Similar analysis to the above can be made for
Θ= {θ1,ϕ1,ϕ2} where both rotating and steering joints 

of one caster wheel and the steering joint of another 
caster wheel are actuated.

5. ISOTROPY ANALYSIS FOR    
REDUNDANT ACTUATION

5.1 Redundant Actuation Sets
  A COMR with redundant acuation can have four, five 
and six actuated joints (n=4,5,6), each of which can 
be either rotating or steering one.  According to the 
number and combination of actuated joints and the 
number of active wheels, all possible redundant actuation 
sets, Θ, can be divided into five  groups, denoted by 
RAG I, II, III, IV, and V, as listed in Table 2.

Table 2 Five redundant actuation groups.
Number 

of 
actuated 

joints

Number 
of 

active 
wheels

Actuation set
Redundant
actuation 

group

n=4

2 Θ= {θ1,ϕ1,θ 2,ϕ2} RAG I

3

Θ= {θ1,ϕ1,θ2,θ 3}
RAG II

Θ= {θ1,ϕ1,ϕ2,ϕ3}

Θ= {θ1,ϕ1,θ 2,ϕ3} RAG III

n=5 3
Θ= {θ1,ϕ1,θ2,ϕ2,θ3}

RAG IV
Θ= {θ1,ϕ1,θ 2,ϕ2,ϕ3}

n=6 3 Θ= {θ1,ϕ1,θ 2,ϕ2,θ 3,ϕ3} RAG V

5.2 Isotropy Analysis for RAG I

  Consider Θ= {θ1,ϕ1,θ2,ϕ2} where both rotating and 
steering joints of two caster wheels are actuated, for 
which [ g 1 g 2 g 3 g 4 ]= [ u 1 v 1 u 2 v 2 ] .  
  First, under C1, we have

∑
2

1
 ( u k u k

t
 + v k v k

t
 ) =  2 I 2 (32)

which always holds.  Next, under C2, we have

∑
2

1
{ ( u k

t
q k ) u k+ ( v k

t
q k ) v k }=∑

2

1
q k= 0 (33)

or

p1 + p2 = 0 (34)

which yields

ϕ1 = arcsin (
1
2 3

l
d
),   ϕ2 = π-ϕ1 (35)

  Since C1 places no constraint and C2 places two 
scalar constraints, given by (34), on two variables, ϕ1 
and ϕ2, in general, there exist multiple isotropic 
configurations independently of ϕ3.  Fig. 5 illustrates an 
isotropic configuration, where the steering links of two 
caster wheels are symmetric with respect to y-axis, with 
the centers of two caster wheels and the center of the 

platform lying on the line of y= l
2 3

.  Note that the 

isotropic configuration does not exist if the steering link 

length is less than l
2 3

.

2p1p

1u 2u

Fig. 5 Isotropic configuration for Θ= {θ1,ϕ1,θ 2,ϕ2} 
belonging to RAG I.

5.3 Isotropy Analysis for RAG II

  Consider Θ= {θ1,ϕ1,θ2,θ 3} where both rotating and 
steering joints of one caster wheel and two rotating 
joints of two caster wheels are actuated, for which 
[ g 1 g 2 g 3 g 4 ]= [ u 1 v 1 u 2 u 3 ] .  

  First, under C1, we have

u 2 u 2
t
 + u 3 u 3

t
 = I 2 (36)

which is
c 2s 2+ c 3s 3 =  0.0 (37)

yielding

ϕ3 = ϕ2±
π
2

(38)

Note that u 2 and u 3 are perpendicular to each other, 
and so are v 2 and v 3.  Next, under C2, we have

q 1+ ( u 2
t
q 2) u 2+ ( u 3

t
q 3 ) u 3= 0 (39)

or

p 1+ ( v2
t
p 2 ) v 2+ ( v3

t
p 3 ) v 3= 0 (40)

  Since C1 places one scalar constraint, given by (37), 
and C2 places two scalar constraints, given by (40), on 
three variables, ϕ1, ϕ2 and ϕ3, there exist multiple 
isotropic configurations in general.  Fig. 6a) illustrates an 
isotropic configuration, where the steering links of two 
caster wheels with actuated rotating joint are 
perpendicular to each other and the center of the other 
caster wheel with actuated rotating and steering joints is 
located in such a way as to satisfy (40).
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Fig. 6 Isotropic configurations for RAG II: 
a) Θ= {θ1,ϕ1,θ2,θ 3} and b) Θ= {θ1,ϕ1,ϕ2,ϕ3}.

  Similar analysis to the above can be made for
Θ= {θ1,ϕ1,ϕ2,ϕ3} where both rotating and steering 

joints of one caster wheel and two steering joints of two 
caster wheels are actuated.  Fig. 6b) illustrates an 
isotropic configuration, where the steering links of two 
caster wheels with actuated steering joint are 
perpendicular to each other and the center of the other 
caster wheel with actuated rotating and steering joints is 
located in such a way as to satisfy

p 1+ ( u 2
t
p 2 ) u 2+ ( u 3

t
p 3) u 3= 0 (41)

5.4 Isotropy Analysis for RAG III

  Consider Θ= {θ1,ϕ1,θ2,ϕ3} where both rotating and 
steering joints of one caster wheel and one rotating and 
one steering joints of two caster wheels are actuated, for 
which [ g 1 g 2 g 3 g 4 ]= [ u 1 v 1 u 2 v 3 ] .  
  First, under C1, we have

u 2 u 2
t
 + v3 v 3

t
 = I 2 (42)

which is
c 2s 2- c 3s 3 =  0.0 (43)

yielding
ϕ3 =  ϕ2 (44)

Next, under C2, we have

q 1+ ( u 2
t
q 2 ) u 2+ ( v3

t
q 3 ) v 3= 0 (45)

or

p 1+ ( v2
t
p 2 ) v 2+ ( u3

t
p 3 ) u 3= 0 (46)

  Since C1 places one scalar constraint, given by (43), 
and C2 places two scalar constraints, given by (46), on 
three variables, ϕ1, ϕ2 and ϕ3, there exist multiple 
isotropic configurations in general.  Fig. 7 illustrates an 
isotropic configuration, where the steering links of one 
caster wheel with actuated rotating joint and another 
caster wheel with actuated steering joint are parallel to 
each other and the center of the other caster wheel with 
actuated rotating and steering joints is located in such a 
way as to satisfy (46).  
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Fig. 7 Isotropic configuration for Θ= {θ1,ϕ1,θ 2,ϕ3} 
belonging to RAG IV.

5.5 Isotropy Analysis for RAG IV

  Consider Θ= {θ1,ϕ1,θ 2,ϕ2,θ 3} where both rotating 
and steering joints of two caster wheels and the rotating 
joint of one caster wheel are actuated, for which 
[ g 1 g 2 g 3 g 4 g 5 ]= [ u 1 v 1 u 2 v 2 u 3 ] .  

  First, under C1, we have

u 3 u 3
t
 =  0.5 I 2 (47)

which is

c 3
2
= 0.5,  c 3s 3= 0.0 (48)

There does not exist ϕ3 satisfying (48) and the isotropy 
of A cannot be achieved at all.
  Similar analysis to the above can be made for
Θ= {θ1,ϕ1,θ2,ϕ2,ϕ3} where both rotating and steering 

joints of two caster wheels and the steering joint of one 
caster wheel are actuated.

5.6 Isotropy Analysis for RAG V

  Consider Θ= {θ1,ϕ1,θ 2,ϕ2,θ 3,ϕ3} where both rotating 
and steering joints of three caster wheels are fully 
actuated, for which 
[ g 1 g 2 g 3 g 4 g 5 g 6 ]= [ u 1 v 1 u 2 v 2 u 3 v 3 ] .

  First, C1 holds always.  Next, under C2, we have

∑
3

1
p k = 0 (49)

which yields

ϕ2 = ϕ1±
2π
3
,   ϕ3 = ϕ1∓

2π
3

(50)

  Since C1 places no constraints and C2 places two 
scalar constraints, given by (49), on three variables, ϕ1, 
ϕ2 and ϕ3, there exist infinite number of isotropic 
configurations in general.  Fig. 8 illustrates an isotropic 
configuration of a COMR. where the centers of three 
caster wheels are symmetric with respect to the center of 
the platform.
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Table 3 All actuation sets resulting in more than one isotropic configuration.

Actuation 
group

Actuation set
Θ

Number of 
isotropic 

configurations

Isotropic characteristic length
L iso

NAG I
{θ 1,θ 2,θ 3} infinite ( | v 1

t
p1 |= | v 2

t
p2 |= | v 3

t
p3 |)

{ϕ 1,ϕ 2,ϕ 3} infinite ( | u 1
t
p1 |= | u 2

t
p2 |= | u 3

t
p3 |)

RAG I {θ 1,ϕ 1,θ 2,ϕ 2} multiple ( || p 1 ||= || p 2 ||)

RAG II
{θ 1,ϕ 1,θ 2,θ 3} multiple ( || p 1 ||= ( v 2

t
p 2 )

2
 + ( v 3

t
p 3 )

2)

{θ 1,ϕ 1,ϕ 2,ϕ 3} multiple ( || p 1  ||= ( u 2
t
p 2 )

2
 + ( u 3

t
p3 )

2)
RAG III {θ 1,ϕ 1,θ 2,ϕ 3} multiple ( || p 1  ||= ( v 2

t
p2 )

2 + ( u 3
t
p 3 )

2)
RAG V {θ 1,ϕ 1,θ 2,ϕ 2,θ 3,ϕ 3} infinite ( || p 1 ||= || p2 ||= || p3 ||)

2p

1p

3p

Fig. 8 Isotropic configuration 
for Θ= {θ1,ϕ1,θ2,ϕ2,θ 3,ϕ3} belonging to RAG V.

6. SOME DISCUSSIONS

6.1 Number of Isotropic Configurations
  Depending on the selection of actuated joints, the 
number of isotropic configurations which satisfy C1 and 
C2 can be either none, multiple(finite), or infinite.  Table 
3 lists the nonredundant and redundant actuation sets 
resulting in more than one isotropic configuration.  From 
Table 3, the following observations can be made.  When 
the actuation of three caster wheels are homogeneous, 
including Θ= {θ1,θ2,θ3}, {ϕ 1,ϕ 2,ϕ 3}, and 
{θ 1,ϕ 1,θ 2,ϕ 2,θ 3,ϕ 3}, there exist infinite number of 

isotropic configurations.  When the number of actuated 
joints are redundant, including Θ= {θ1,ϕ1,θ 2,θ3}, 
{θ 1,ϕ 1,ϕ 2,ϕ 3}, {θ 1,ϕ 1,θ 2,ϕ 3}, and {θ 1,ϕ 1,θ 2,ϕ 2}, 

there exist multiple isotropic configurations.  The only 
two exceptions are Θ= {θ1,ϕ1,θ 2,ϕ2,θ 3} and 
{θ 1,ϕ 1,θ 2,ϕ 2,ϕ 3}.  It should be mentioned that both 

homogeneity in wheel actuation and redundancy in joint 
actuation play a significant role for enhancing the 
isotropy of a COMR.

6.2 Isotropic Characteristic Length
  As described in Section 3, the isotropy of a COMR 
can be achieved under three conditions, C1, C2, and C3.  
Once an isotropic configuration is identified under C1 
and C2, the characteristic length required for the 
isotropy, L iso

, can be determined under C3.  
  As an example, let us consider the case of 
Θ= {θ1,θ 2,θ3}.  Under C3, we have

1

L 2
∑
3

1
( u k

t
q k )

2
=
1

L 2
∑
3

1
( v k

t
p k )

2
= 1.5 (51)

With (21) being held, from (51), the characteristic length 
of an isotropic COMR is obtained by

L iso= (| v 1
t
p 1 |= | v 2

t
p 2 |= | v 3

t
p 3 |) (52)

For all actuation sets with more than one isotropic 
configuration, Table 3 also lists the resulting isotropic 
characteristic length L iso

.  Note that the isotropy of a 
COMR cannot be achieved unless L=L iso

.

7. CONCLUSION
  This paper presented a complete isotropy analysis of a 
caster wheeled omnidirectional mobile robot with 
nonredundant and redundant actuation.  All possible 
actuation sets with different number and combination of 
rotating and steering joints were considered.  First, with 
the characteristic length introduced, the kinematic model 
was obtained.  Second, a general forms of the isotropy  
conditions was given in terms of physically meaning 
vector quantities.  Third, for all possible nonredundant 
and redundant actuation sets, the algebraic expressions of 
the isotropy conditions were derived to identify the 
isotropic configurations.  Fourth, the number of the 
isotropic configurations and the characteristic length for 
the isotropy were discussed.  The isotropy analysis made 
in this paper deserves special attention, in that the 
omnidirectional mobility does without the isotropy 
characteristics in motion control.

REFERENCES
[1] R. Holmberg, "Design and Development for 

Powered-Caster Holonomic Mobile Robot," Ph. D. Thesis, 
Dept. of Mechanical Eng. Stanford University, 2000.

[2] P. F. Muir and C. P. Neuman, "Kinematic Modeling 
of Wheeled Mobile Robots," Jour. of Robotic 
Systems, vol. 4, no. 2, pp. 281-340, 1987.

[3] G. Campion, G. Bastin, and B. D`Andrea Novel, 
"Structural Properties and Classification of Kinematic 
and Dynamic Models of Wheeled Mobile Robots," 
IEEE Trans. on Robots and Automations, vol. 12, no. 
1, pp. 47-62, 1996.

[4] W. Kim, D. Kim, B. Yi, B. You, and S. Yang, 
"Design of an Omni-directional Mobile Robot with 3 
Caster Wheels," Trans. on Control, Automation, and 
Systems Engineering, vol. 3, no. 4, pp. 210-216, 2001.

[5] S. Kim and H. Kim, "Isotropy Analysis of Caster 
Wheeled Omnidirectional Mobile Robot," Proc. of Int. 
Conf. on Robotics and Automation, pp. 3093-3098, 2004.

[6] S. K. Saha, J. Angeles, and J. Darcovich, "The 
Design of Kinematically Isotropic Rolling Robots with 
Omnidirectional Wheels," Mechanism and Machine 
Theory, vol. 30, no. 8, pp. 1127-1137, 1995.

2361


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print



