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1. INTRODUCTION 
 

As a biped robot has become more anthropomorphic and 
performs a various task on behalf of human, the research on 
biped robots gradually attracts much attention and is 
progressing dynamically. However, biped robots are difficult 
to control due to their nonlinear and coupled dynamics. First, 
Inverted pendulum [1] is applied to interpret some 
characteristics of human walking. Later, researchers construct 
a 3-link biped robot model [2], and a 5-link biped robot model 
[3,4]. 
In controlling biped robots, we face some problems such as 

instability of locomotion, high-order dynamic equation, 
existence of different phases of the walking cycle and various 
uncertainties. Due to these constraints, a biped robot requires a 
robust control technique having higher performance in spite of 
uncertainties comparing with standard PD control. So, a 
computed torque or inverse dynamics technique using 
feedback linearization [5,6] is proposed to control a biped 
robot. However, such methods are difficult to control a biped 
robot model with the model uncertainties. Therefore, the 
sliding mode technique for the robust control of a biped robot 
with uncertainties is proposed [7]. However, the sliding mode 
control (SMC) requires prior knowledge of the mathematical 
model and uncertainty bounds. 
On the other hand, recently, wavelet neural networks 

(WNNs), which combine the capability of neural network 
[8-9] for learning from processes and the wavelet 
decomposition [10], are used as good estimation tools for the 
identification and control of dynamic system [11]. Training 
algorithm plays important role for WNN approximation. The 
gradient-descent (GD) method is used as conventional on-line 
training technique. However, the GD method is difficult to 
acquire sensitivity information for unknown or highly 
nonlinear dynamics and has the problem, which settles to the 
local minimum. So, training methodology, which is induced 
by Lyapunov stability theorem [12], has researched to ensure 
the stability, robustness, and performance of system.  

In this paper, we propose WNN based SMC (WNNSMC) 
for the stable walking of 5-link biped robot with uncertainties. 
In our control system, wavelet neural network is employed to 
estimate uncertain and nonlinear functions of the 5-link biped 
robot. All weights of WNN are trained by the adaptation laws 
induced from the Lyapunov stability theorem, which are   
used to guarantee the stability of control system. Finally, in 

order to verify the effectiveness and robustness of the 
proposed control technique, the performance of control 
scheme are proved by comparing the tracking performance of 
the WNNSMC with that of the SMC via the computer 
simulations.  
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2. THE 5-LINK BIPED ROBOTIC MODEL 

 
2 .1 Kinematic model 

The 5-link biped robot model used in this paper is shown in 
Fig. 1. Each link is connected by a rotating joint, which is 
driven by an independent DC motor. 

 

 
 

Fig.1 Biped in single support phase. 
 

Parameters shown in Figure 1 are as follows: 
im : Mass of link ,   i

il  : Length of link , i

id : Distance between the mass center of link  and its lower 
joint, 

i

iI : Moment of inertia with respect to an axis passing through 
the mass center of link  and being perpendicular to the 
motion plane, 

i

iθ  : Angle of link  with respect to vertical (the positive 
direction of 

i

iθ , , is the one shown in the 
figure). 

1,2,3,4,5i =
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Relationship of link is expressed as 
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.2 Dynamic model 

f the biped in single support phase, represents as 
llows: 
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It is assumed that the biped does not slip at the end of 
supporting without a friction. The biped robot model, which 
induced by the Lagrange dynamic model describing the 
motion o
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 design methodology of 

joint. A proposed WNN structure is 
own in Fig.2. 

 

3. CONTROL OF THE BIPED ROBOT 
 
In order to control the tracking performance of the biped 

robot effectively, the WNNSMC is proposed in this Section. 
First, we discuss a WNN structure used in the proposed 
control system. Second, the
WNNSMC system is discussed. 
 
3.1 Wavelet neural network 
 
In this paper, we use two WNN estimators in each joint: the 

one is used to estimate a function of gravity, Coriolis and 
disturbance, and the other is to estimate a function of inertia 
matrix. 
In our control system, we predict parametric variations and 

uncertainties in each 
sh
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Fig. 2 Structure of wavelet neural network. 
 
The signal propag
is
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where px  denotes the input of the WNN, and jpm , jpd  are 
translation and dilation vector of the product layer. Then, 
outputs sum products of training weight ther 

avele tion  (
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where, n is the number of wavelet node, jow  is the weight 
vector between product layer and the output layer,  j is the 
number of node,  is 

 
wavelet and the ber of joint.  i  num

Outputs are 1Oy X
∧
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∧
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The weighting vector is as the follows: 
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The control structure which is approximated by WNN is 
shown in Fig.3.  
 

 
3.2 WNNSMC 
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Fig. 3 WNNSMC scheme. 

the weights of the WNNs are trained by 
the adaptation laws (10)-(11), the stabili
system is guaranteed. 

i i

 
 

 Theorem 1: Assume that the biped robot model (4) is used 
for our control system. The proposed control system is 
designed as (9). Then, 
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So, 1| | 0sµ ≤ . 

Since ,  is negative semi-definite . If  is 
negative semi-definite, every stability function is negative 

semi-definite. Also, summation of  is negative 
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4. SIMULATION 
 
The 5-link biped model shown in Fig. 1 is used in simulation. 

The parameter of a biped robot is small sized, whose values 
are shown in Table 1. And desired references are a steady 
stable gait on horizontal plane. 
 

Table 1 Parameters of biped robot. 
 

 
The planning of the trajectory for a biped robot walking on a 

horizontal plane surface is divided into three parts: Starting 
step from the vertical position on a horizontal plane surface, 
steady walking on a horizontal plane surface and walking form 
start to steady on a horizontal plane surface. The locomotion 
mode of a biped robot on the horizontal surface has the form 
of Fig. 4. Reference trajectory for a steady stable walking is 
shown as Fig. 5. 

 
Fig. 4 Reference Trajectory of . q

 

 
Fig. 5 Locomotion mode of 5-link biped robot. 

 
 

4.1. SMC 
 
We design the SMC of a biped robot in accordance with [7].  

We simulate SMC with 40% parametric uncertainty of which 
40% each of parameter value add on mass and moment of 
inertia. We set up with control gain λ =100. And we simulate 
in final time 1.5 sec and sampling time is chosen as 0.001 sec. 
 The SMC performs a robust and good performance in spite 

of uncertainties in simulation. Driving force and tracking error 
of SMC is shown in Fig. 7 and Fig.8, respectively. 

Link 
Mass  

im (kg) 
Moment of inertia 

iI  (kg m) 
Length 

il (m) 

Location of 
center of mass 

id (m) 
Torso 

Thigh 

Leg 

14.79 

5.28 

2.23 

23.30 10−×  
23.30 10−×  
23.30 10−×  

0.486 

0.302 

0.332 

0.282 

0.236 

0.189 

 
Fig. 6 Reference tracking trajectory for SMC. 
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Fig. 7 Variation of the driving torques with time 

 for SMC. 
 

 
Fig. 8 Absolute summed error SMC in each joint 

for SMC. 
 
4.2. WNNSMC 
 
The SMC shows a robust and good performance. We verify 

that a proposed system which estimates uncertainties and 
nonlinearities is superior to the SMC by simulations. So we 
simulate under the same condition as the SMC with 
uncertainties in order to prove that a WNNSMC works well to 
estimate parametric bounds and performs robustly. The 
parameters of the WNNSMC are given as follows: 

Xλ =0.0000005, Yλ =0.0000003, λ =100. 

Xλ , Yλ  of WNNSMC parameter are set up with the best 
performance through simulations. In each joint, Two WNNs 
are used as the estimator: one for estimating a function of 
gravity, Coriollis and disturbance, and the other for estimating 
a function of inertia matrix, where each WNN estimator has 
three wavelet nodes. Parameters of translation, dilation are 
randomly selected and weight is tuned by the Lyapunov 
stability synthesis. Also, we assumed that the biped robot has 
the 40% parametric uncertainty of inertia moment and mass. 
Table 2 compares the performance of the WNNSMC with 

that of the SMC by means of the mean squared error(MSE). A 
biped robot tracking a reference trajectory is simulated 
without uncertainty and with uncertainty, respectively. By 
means of comparison of error, we can confirm that the 
WNNSMC is superior to the SMC for walking cycle without 
uncertainties as well as with uncertainties. 
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Fig. 9 Reference tracking trajectory for WNNSMC. 

0 0.5 1 1.5
-5

0

5
x 10

4

Time(sec)

Tq
0

0 0.5 1 1.5
-5

0

5
x 10

4

Time(sec)

Tq
1

0 0.5 1 1.5
-2

0

2
x 10

4

Time(sec)

Tq
2

0 0.5 1 1.5
-5000

0

5000

Time(sec)

Tq
3

0 0.5 1 1.5
-2000

0

2000

Time(sec)

Tq
4

 
Fig.10 Variation of the driving torques with time for 

WNNSMC. 
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Fig.11 Absolute summed error of variation with time for 

WNNSMC. 
 

 
Table 2 The performance comparison of SMC and WNNSMC. 
 

Simulation 
Involvement MSE of SMC MSE of WNNSMC 

No uncertainty 3.1569× 10-5 1.1744× 10-5

40% parametric 
uncertainty 1.0991× 10-4 6.6173× 10-5
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5. CONCLUSION 
 
In this paper, we designed a WNN control system based on 

sliding-mode technique for the 5-link biped robotic model in 
order to improve the efficiency of position tracking 
performance of biped locomotion. In our control system, 
WNN was employed to estimate uncertain and nonlinear 
functions of the 5-link biped robot. We designed two WNN 
estimators in each joint. The one is used to estimate a function 
of gravity, Coriollis and disturbance, and the other is to 
estimate a function of inertia matrix. Their weights were 
trained by the adaptation laws induced from the Lyapunov 
stability theorem, which guarantee the stability of the 
proposed control scheme. Through computer simulations, we 
confirmed that the performance of the WNNSMC was 
superior to that of the SMC regardless of uncertainties. 
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