
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

A crowd scene usually involves hundreds and thousands of
extras. Unlike a leading actor, extras do not play an important
role in a scenario. However the quality of a crowd scene is
important and it greatly affects the overall impression of a film.
A virtual crowd scene requires deliberate considerations on
interaction between digital characters as well as motion
control of each character. Generally interactions between
digital characters are unpredictable and complex, and thus
manually creating a virtual crowd scene requires great time
and effort of an animator. Considering that a crowd scene is a
short part of the total film, it is preferable to get a crowd scene
with little time and effort.

Previous works on virtual crowd simulation usually use
two-phase method that makes a simulation of particles or
simple objects first, and then creates appropriate motion of a
digital character according to the simulation result. However,
this approach is inappropriate for a crowd scene consisting of
several kinds of actions. This is because movement of a
particle does not give sufficient information on the type of
action to be applied to the particle. Existing commercial crowd
simulation softwares are complex and have computer
program-like script interfaces, which makes an ordinary
animator hard to learn and use them.

This paper proposes a crowd simulation method that
requires minimal operation by user and a method of
connecting simulation result to natural motion of a character.
Proposed crowd simulation system was implemented as a
plug-in of Maya which is one of the most commonly used
modeling, animation and rendering software for movies. It
thus appears that an animator can easily learn to use our
plug-in software.

2. RELATED WORK

There has been a great deal of past research in crowd

simulations, especially, collision detection that is known by
bottleneck in computer simulation. I-Collide[1] was adopted
as a tow-level approach to control complex and a great
number of objects in a large scale environments. Hubbard[2]
proposed progressive refinement method to guarantee
accuracy while maintaining steady and high frame rate.
Kim[3] presented an efficient collision detection algorithm
among spheres moving with unknown trajectories.
Reynolds[4][5], Xiaoyuan[6], Niederberger[7] solved a
collision detection about non-human creature and focused on

the simple behaviours of creature.
In Improv[8], it was suggested a method which controls the

interactive actors by interpolation after defining the range of
joint angle using script language. Improv consisted of two
subsystems, an animation engine and a behaviour engine. The
combined system provided an integrated set of tools for
authoring the minds and bodies of interactive actors. Lee et
al.[9] presented that a connected set of a human-like character
is able to be created from non-linear sequences of motion,
automatically organized for search, and used real-time control
of an avatar using three interface techniques: selecting from a
set of available choices, sketching a path, and acting out a
desired motion in front of a camera. Kovar et al.[10]
constructed a directed graph called a motion graph that
includes connections among the database for creating realistic,
controllable motion. The motion graph consisted of original
motions and automatically generated transitions. Li et al.[11]
described motion texture that consisted of LDS(linear dynamic
system) for synthesizing complex human character that is
statistically similar to the original motion captured data. Pullen
et al.[12] discussed a method for creating animations by
setting a small number of key-frames and used motion capture
data to enhance the reality of produced animation. Arikan et
al.[13] created a new motion which performed the specified
actions at specified times by assembling the motion capture
data from motion database and sketching on the timeline with
annotations.

Thalmann[14] and Ulicny[15] presented a method that
controls the crowd in real time in a virtual environment.
Musse et al.[16] described a model for simulating human
crowd by a hierarchy composed of virtual crowds, groups and
individuals in real time.

3. SYSTEM OVERVIEW

Proposed crowd simulation system consists of UI(user
interface), crowd creation module, crowd simulation module
and motion synthesis module. UI was created by using mel
script provided by Maya, and a user can set the properties of
the crowd to be created. A crowd is created according to the
inputted properties and simulated using sensor-brain module.
The sensor-brain module calculates the next position of a
character in the planar space and determines which action to
do. Once the position in the planar space and the action are
determined, the root position is determined in the
3-dimensional space based on the terrain information, and

Implementation of a Virtual Crowd Simulation System

Il-Kwon Jeong*, Seongmin Baek*, Choon-Young Lee** and In-Ho Lee*
* Digital Actor Research Team, Digital Content Research Division, ETRI, Daejeon, Korea

(E-mail: {jik, baeksm, leeinho}@etri.re.kr)
**Division of Mechanical Engineering, Kyungpook National University, Daegu, Korea

(E-mail: cylee@knu.ac.kr)

Abstract: This paper introduces a practical implementation of virtual crowd simulation software. Usual commercial crowd
simulation softwares are complex and have program-like script interfaces, which makes an animator hard to learn and use them.
Based on the observations that most crowd scenes include walking, running and fighting movements, we have implemented a
crowd simulation system that automatically generates movements of virtual characters given user's minimal direction of initial
configuration. The system was implemented as a plug-in of Maya which is one of the most commonly used 3D software for
movies. Because generated movements are based on optically captured motion clips, the results are sufficiently natural.

Keywords: Crowd, simulation, animation, virtual reality

2217

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

key-frames of the character are set using motion capture data.
Fig. 1 shows the overall system diagram.

Fig. 1 System diagram

4. CROWD SIMULATION

4.1 Sensor-brain module

In the proposed system, agents have their own virtual
sensors and intelligence to generate an intelligent motion
according to the specified scenario. The targeted application,
crowd simulation, involves a collection of interacting, highly
autonomous and dynamically complex human-like agents.
Interactions between agents are carried out via sensor, brain,
motion. The time varying interaction can not be tracked by an
extensive formal analysis, therefore, the simulation of it is of
primary importance [17].

Our crowd simulation software consists of a collection of
autonomous agents (Ai), which interact with the surrounding
World(W) and other agents. The World is a set of entities and
serves as a formal representation of the environment. The
entities include autonomous agents, static and dynamic objects,
and geometric information of the ground level.

The autonomous agent has its own virtual sensor to catch
the current state of the World and surrounding agents. The
state of the World includes information about the position of
static obstacles. Virtual sensor has the following parameter to
simulate various situations: recognition distance (d) and
angle(θ) . Adjusting these two parameters makes it possible
to simulate natural motion of agents in specific environment,
such as foggy or sunny situation. The area can be modeled as a
triangle, circle, cone, rectangle, etc. Fig. 2 shows a circular
area. Virtual sensor gets available information on the agents or
objects in the range of recognition area. The information level
is also constrained by some flags.

Brain module in the agent performs processing of data and
generates an action command by looking up motion data base.
Currently, this brain module has been developed like a state
machine. Agent states are defined before simulation. For
example, if combat situation between agents is preferred,
agents’ states can be “NEUTRAL”, “FOLLOW”,
“FIND_ENEMY”, and “ATTACK”. State “NEUTRAL” is the
hub state from which directs to other possible state. State
“FOLLOW” takes locomotion command to follow
commandment from our friendly troops. State
“FIND_ENEMY” searches enemies in the environment. State
“ATTACK” generates combat motions (Fig. 3).

In the simulation, basic collision avoidance algorithm was

conducted by simulation manager at each time step. Agent
state and state transition can be specified by user interface.

Fig. 2 Sensor model

Fig. 3 State model for combat: An example

4.2 Action module

Action module applies motion capture data to the character
based on the current position and action command determined
by the sensor-brain module explained in the previous section.
Action module consists of two parts, selection manager and
action manager. Selection manager selects appropriate motion
data from the motion database. Action manager applies an
appropriate transformation to the selected motion data and
applies it to the character.

Selection manager

Motion database is a collection of motion data clips such as
walk, run, fight, etc. However it is hard to select appropriate
motion data for desired action, so additional information on
motion data must be given beforehand.

First, one should define the group that a motion data
belongs to. For example, a motion data can be classified into
walk group, run group, fight group, and so on.

Secondly, one should keep a record of secondary properties
of a motion data specific to the group that it belongs to. The
followings are the secondary properties of a fighting motion
and a walking motion.

Fig. 4 Secondary properties of motion data: Examples

Ft: fight motion group, Up: upper body, Hd: hand
attack, Rt: right, St: straight, Lc: locomotion group,
Wk: walk, Sp 3.5: speed 3.5m/s

NEUTRAL

FOLLOW

FIND_ENEMY

ATTACK

If Enemy is near

If Enemy/I died

If our troop’s Command is found

If our troop’s command is not found

If Enemy is near

If Enemy is near

STOP
No Enemy

or died

Over Time

Over Time

d

θ

<recognition area>

UI – Maya Menu

Crowd Creation

Crowd Option

MotionDB

Brain

Sensor

Action

Terrain

CrowdSimulation()

Constraint

Interaction

Ft Up Hd Rt St
L (1 23)
R (1 23)
K 1 4 12 20 23

Lc Wk Sp 3.5
L (1 12) (20 32)
R (10 22) (30 42)
K 1 6 10 12 18 …

2218

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

In Fig. 4, L(…) or R(…) means a constraint that the left or

right foot should be in contact with the ground for the
specified interval. For example L(1 23) means that the left foot
is in contact with the ground at frame 1 to 23. Frame numbers
that follow after the symbol ‘K’ mean important frames, and
these frames are used as key-frames when the motion is
imported to Maya.

This paper is focused on creating combat or fighting virtual
crowd, so motion groups are defined as the following.

Group 1: Locomotion
Group 2: Fight motion
Group 3: Fall down motion
Group 4: Bravo motion

A user can build an arbitrary motion group specific to his

application. Using the pre-described motion properties
explained above, selection manager selects motion data that is
appropriate for the action command determined by
sensor-brain module.

Action manager

It is hard to find a motion data that exactly matches the
simulation result from sensor-brain module. For example, we
have several locomotion motion data with various moving
speeds in the motion database. But, it is difficult to find a
match for simulation result. For that reason, a motion
interpolation method is needed. In this paper, Squad method
was used to interpolate the joint angle data [18].

We have used a character with 23 joints. Putting every
frame data to the character requires lots of memory and can
cause the total system to be slow and unstable. Especially
large memory usage makes a scene heavy and hard to edit, so
using small memory is an important issue in CG (Computer
Graphics) production industry. We used a small set of
key-frames instead of the total frames. The data in the last low
in Fig. 4 indicates this key-frame numbers. With only these
key-frames, one can reconstruct the original motion data
nearly by using the interpolation method. A comparison
between the joint angle values in the original motion data and
ones interpolated from the key-frame data is shown in Fig. 5.

(a)

(b)

Fig. 5 Original motion (a) vs. interpolated motion (b):
Right thigh joint angle values(Rx, Ry, Rz) and key
frames(1, 12, 16, 28, 31, 34, 42, 50, 53, 66, 70) were

used

For characters that are fairly distant from the virtual camera
need not to have all joint data because it is hard to observe the
distant characters in detail. We have used a different number
of key frames according to the distance between the character
and the virtual camera.

5. IMPLEMENTATION RESULT

We implemented the proposed crowd simulation system as

a plug-in software of Maya and applied to creating a combat
scene (Fig. 6).

A user can create a group of character with type A or B.
Each group regards the other group as the enemy and seeks for
the enemy and moves to them intelligently. If an enemy is
found a character starts to fight with him. We have set an
energy level to each character, and the level is lowered if hit
by an enemy character. A character wins when the energy
level of the enemy becomes zero, then he continues to find
another nearby enemy by using his sensor.

Fig. 7 shows about 25,000 characters created on the hills.
Each group of characters are moving with different speeds to
the other group, and various motion data clips were used.
Even if we had used one motion data, the result scene would
have appeared to be natural due to asynchronous movements.

(a)

(b)

(c)

Fig. 6 Implemented crowd simulation plug-in (a),

rendered results (b, c): (b) approach (c) fight

2219

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 7 Crowd scene of 25,000 characters on the hills

The proposed crowd simulation method is not confined to

human characters. We have applied the system to generating a
group of fish. For collision detection and processing, we have
used a dynamics simulation engine [19]. Fig. 8 shows the
result.

Fig. 8 A group of fish simulated with the proposed system

5. CONCLUSIONS

A crowd scene involves a lot of characters and motions,
and realistic interaction between characters and appropriate
reaction according to the terrain are important issues. However
manually creating each character in a crowd is highly complex
and time-consuming task. Thus easy-to-use crowd simulation
software is essential to crowd scene generation.

The crowd simulation system proposed in this paper was
implemented as a plug-in of Maya, so an animator can get
easily accustomed to the plug-in. A user can set properties and
number of characters via GUI. Owing to the sensor-brain
module the simulation result is quite natural and similar to real
crowd movements. Based on the motion database of motion
captured data, motion selection and interpolation method
produce natural motions.

The extension of our crowd simulator to a more general
and powerful simulation of agents with human-like
intelligence would be our further research topic. Developing a
virtual sensor simulating human eye is another exciting topic
for crowd simulation. Distributed simulation and modification
method for large crowd data will also be useful functions.

REFERENCES

[1] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi,

“I-COLLIDE: An Interactive and Exact Collision
Detection System for Large-Scale Environments,” Proc.

of Symposium on Interactive 3D Graphics, pp. 189-196,
1995.

[2] P. M. Hubbard, “Collision Detection for Interactive
graphics applications,” IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, No. 3, pp.
218-230, 1995.

[3] H. K. Kim, L. J. Guibas, and S. Y. Shin, “Efficient
Collision Detection among Moving Spheres with
Unknown Trajectories,” Technical report,
CS-TR-2000-159, KAIST, 2000.

[4] C. W. Reynolds, “Flocks, herds, and schools: A
distributed behavioral model,” Proc. of SIGGRAPH 97,
pp. 25-34, 1987.

[5] C. W. Reynolds, “Steering Behaviors for Autonomuos
Characters,” Proceedings of the 1999 Game Developers
Conference, pp. 763-782, 1999.

[6] Tu, Xiaoyuan, and D. Terzopoulos, “Artificial Fishes:
Physics, Locomotion, Perception, Behavior,” Proc. of
SIGGRAPH 94, pp. 43-50, 1994.

[7] C. Niederberger and M. Gross, “Hierarchical and
Heterogeneous Reactive Agents for Real-Time
Applications,” Computer Graphics Forum, Vol. 22, No.
3, 2003.

[8] Perlin, K., and Goldberg, A., “Improve: A System for
Scripting Interactive Actors In Virtual Worlds,”
Proceedings of ACM SIGGRAPH 1996, pp. 205-216,
1996.

[9] J. Lee, J. Chai, Reitsma, P.S.A., HODGINS, J. K., and
Pollard, “Interactive control of avatars animated with
human motion data,” Proceedings of ACM SIGGRAPH
2002, pp. 491-500, 2002.

[10] Kovar, L., Gleicher, M., and Pighin, F., “Motion
Graphs,” Proceedings of ACM SIGGRAPH 2002, pp.
473-482, 2002.

[11] LI, Y., Wang, T., and Shum, H. Y., “Motion Texture: A
Two-Level Statistical Model for Character Motion
Synthesis,” Proceedings of ACM SIGGRAPH 2002, pp.
465-472, 2002.

[12] Pullen, K. and Bregler, C., “Motion Capture assisted
animation: Texturing and synthesis”, Proceedings of
SIGGRAPH 02, pp. 501-508, 2002.

[13] Arikan, O., Forsyth, D. A., and O’brien, J. F., “Motion
Synthesis from Annotations,” Proceedings of ACM
SIGGRAPH 2003.

[14] D. Thalmman, S. R. Muss, F. Garat, “Guiding and
Interacting with Virtual Crowds,” Proc. of
EUROGRAPHICS Workshop on Animation and
Simulation, pp. 22-34, 1999.

[15] B. Ulicny and D. Thalmman, “Towards Interactive
Real-Time Crowd Behavior Simulation,” Computer
Graphics Forum, Vol. 21, No. 4, pp. 767-773, 2002.

[16] S.R. Musse, D. Thalmann, “Hierarchical Model for Real
Time Simulation of Virtual Human Crowds,” IEEE
Transactions on Visualization and Computer Graphics,
Vol. 7, No. 2, pp. 152-164, 2001.

[17] Z. Papp, A. Thean, M. Elk, and M. Dorrepaal,
“Multi-Agent Based Simulator with High Fidelity
Virtual Sensors,” Proceedings of International
Conference on Instrumentation and Measurement
Technology, pp. 882-887, 20-22 May, 2003. Valley,
Seoul, 1989.

[18] D. Eberly. Quaternion Algebra and Calculus, Magic
Software, Inc. http://www.magic-software.com, 2002.

[19] ODE (Open Dynamics Engine), http://www.ode.org

2220

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

