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Abstract: In this paper we propose a new fault detection and isolation (FDI) method for those faults of parameter change

type. First, we design a residual generator based on the δ-operator model of the plant by using the stable pseudo inverse system.

Second, the parameter change is estimated by using the property of the block Hankel operator. Third, reliability with respect

to stability is quantified. Fourth, the limitations for the meaningful diagnosis in our method are given. The numerical examples

demonstrate the effectiveness of the proposed method.
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1. Introduction
There has been an increasing interest in theory and applica-

tions of fault diagnosis techniques since the attention to re-

liability, availability and safety of many real plants has been

growing recently. The fault diagnosis problem has been stud-

ied since the late seventies [1], and many approaches have

been proposed since then. They are divided into two main

approaches from the viewpoint of the way to treat the faults.

One deals with a fault as some additive signal [2][3][5], and

reduces the fault diagnosis problem to a design problem of a

filter that identifies the additive signal. The other deals with

a fault as a variation of the plant model called as multiplica-

tive fault [4][6], and reduces the fault diagnosis problem to an

identification problem [7]. In the former case, a fault is easy

to be dealt with since we can consider the fault as a specified

disturbance, though it is not intuitive, and use some tools

to estimate or observe it. The latter case is intuitive, but

it requires a long time to detect and isolate the fault in the

form of parameter change. It is therefore preferable that the

FDI technique is intuitive and easy to handle.

From this standpoint, we propose a new FDI method with

the two merits stated above. In this paper we deal with mul-

tiplicative faults, and estimate their variations. In Section

2, we consider an FDI problem for a δ-operator model sys-

tem. This is because the model is convenient to handle the

data used in our FDI technique, and it enables to maintain

the meaning of multiplicative fault in the continuous time

model as much as possible. In Section 3, we define the fault

we deal with here, and give the general information about

the fault diagnosis as preliminary. In Section 4, we pro-

pose a new design method for fault detection filter (residual

generator) using a stable pseudo-inverse system based on de-

coupling theory, and obtain the residual. From the residual

obtained, we estimate the parameter fault and evaluate the

result in Section 5. In Section 6, we analyze the proposed

method, give the limitations with respect to the system pa-

rameter change by the fault for the meaningful diagnosis in
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our method, and show the algorithm for fault diagnosis. In

Section 7, we show a numerical example for illustration of

our method, and give the conclusion in Section 8.

2. Problem Statement
In this paper, we consider fault detection and diagnosis for

the δ-operator model system as follows:

δx = Ax + Bu, (1a)

y = Cx, (1b)

where x ∈ Rn, u ∈ Rm, (p ≥ m) and y ∈ Rp are the state, in-

put and output vectors, respectively. We express the system

after fault occurrence by:

δx = (A + ∆Af )x + (B + ∆Bf )u, (2a)

y = Cx, (2b)

where ∆Af , ∆Bf are parameter variations caused by faults.

In addition, we assume that (A, B, C) is a minimal realiza-

tion. We then transform the system (2) into the system with

an additive fault f as follows:

δx = Ax + Bu + Bf (3a)

y = Cx (3b)

f = ΓB(∆Afx + ∆Bfu), (3c)

where ΓB := (BT B)−1BT . Iserman et.al.[4] pointed out

that the multiplicative fault of this type can be transformed

to an additive fault. Thus we first detect and isolate the fault

f , from which we next estimate the corresponding parameter

change ∆Af , ∆Bf , and finally we evaluate the system relia-

bility from the viewpoint of stability based on the estimated

result.

3. Preliminary
We first describe the definition of the fault considered here

and simply state a general fault diagnosis framework as a

preliminary.

2183



P

Vru Vry

r

yu

residual generation
Residual
evaluation

Fig. 1. Structure of model-based FDI system

3.1. Definition of the fault

The definition of fault is necessary to consider the fault di-

agnosis problem. Simani et al. [7] defined fault as an un-

permitted deviation of at least one characteristic property

of the system parameter from the acceptable, usual or stan-

dard condition. He also defined failure as a permanent inter-

ruption of a system’s ability to perform a required function

under specified operating conditions. Applying these defi-

nitions to our problem, fault means the occurrence of the

signal f , and failure means the lack of stability caused by

the parameter change ∆Af , ∆Bf . We use these definitions

below.

3.2. Residual

In fault diagnosis, we need an indicator of fault occurrence,

which is called residual. Naturally it is required to have the

following property:

(
r 6= 0 Fault

r = 0 Not fault
(4)

3.3. Framework of fault diagnosis

Fault diagnosis generally consists of the residual generation

and its evaluation as shown in Fig.1, where P is a plant,

[Vru, Vry] is a residual generator.

　 First, we design a residual generator with the above prop-

erty (4). Second, we evaluate the generated result. The de-

tails of the residual generation is described in Section 4, and

that of the evaluation in Section 5.

4. A residual generator using stable
pseudo-inverse system

Many residual generators are designed by using decoupling

theory in order to isolate the fault occurrence position [2][5].

Since the transfer function from u to y, Gyu(δ), is equal

to that from f to y, Gyf (δ), in (3), we can use a stable

pseudo-inverse system [9][10] of Gyf (δ) in order to design a

residual generator. Here the stable pseudo-inverse system

G+(δ) satisfies Q(δ) = G+(δ)Gyf (δ) = G+(δ)Gyu(δ), and

Q(δ) is diagonal. By using the filter G+(δ), we design a

residual generator as follows:

r = Vruu + Vryy

= −Q(δ)u + G+(δ)y

= −Q(δ)u + G+(δ) (Gyu(δ)u + Gyf (δ)f)

= Q(δ)f, (5)

where the residual generator Vru(δ) and Vry(δ) is selected

by −Q(δ) and G+(δ), respectively. Thus we can design a

residual generator which detects the occurrence of the fault

f and isolates the position (number) of f .

4.1. The condition of the residual generator design

We describe the feasibility condition for design of the resid-

ual generator mentioned above. According to the literature

[9][10], it is reduced to the decoupling condition as follows:

Corollary 1: Assume that (A, B) is controllable, and (C, A)

is observable. When the next decoupling matrix:

D :=

2
66664

BT
1 (AT )d1−1CT

BT
2 (AT )d2−1CT

...

BT
m(AT )dm−1CT

3
77775

is row-full rank, then the residual generator Q(δ) for the

system (1) can be designed.

Our final aim is not to estimate the fault signal f , but to

evaluate the closed loop stability in order to avoid the sys-

tem failure. Therefore, the stability of a part of the residual

generator G+(δ) is also important. Thus we need the follow-

ing corollary [10].

Corollary 2: Let the system (A, B, C) be a minimal realiza-

tion. Then the residual generator is stable if and only if the

system (A, B, C) has no invariant zeros on imaginary axis.

The corollary assure the existence of the stable filter G+(δ)

under a certain condition. If the condition does not hold,

we cannot design any stable residual filter G+(δ), and con-

sequently its output y becomes unbounded.

4.2. The design method

Describing the stable monic polynomial with dimension

di − 1 as φi(δ), i = 1, .., m, the residual generator G+(δ) =

(Ar, Br, Cr, Dr) is designed as follows:

Ar = A + BrC (6a)

Cr = DrC (6b)

Nφ =

2
66664

BT
1 φ1(A

T )

BT
2 φ2(A

T )
...

BT
mφm(AT )

3
77775

(6c)

Dr = ΦT
0 (D†)T (6d)

Φ0 = diag
1≤i≤mφi(0) (6e)

Br = −Nφ
T (D†)T (6f)

where, D† is the matrix satisfies the relation DD† = I.

5. Parameter change estimation and its
evaluation

5.1. Estimation of parameter change

The residual generator obtained in Section 4 generates such

a r that enables to isolate the signal f in the form of additive

fault. In practice, however, we have r = Q(δ)f , which is not

the same as r. In addition, we deal with a multiplicative

fault, so we have to estimate the parameter change caused

by the fault. First, we estimate f from r and Q(δ), based on

the following lemma:
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Lemma 1: [11] Let (A, B, C) be a minimal realization, where

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. Here Ok, Cl are k-

extended observability matrix, l-extended controllability ma-

trix, respectively. Then the following relation holds.

Hkl = OkCl ∈ Rkp×lm (7)

Our aim is to estimate f from r, Q(δ). Here, we define

R :=

2
664

r(t)

δr(t)
...

3
775 , F :=

2
664

δ−1f(t)

δ−2f(t)
...

3
775

then we have:

R = HklF (8)

Since Q(δ) := (Aq, Bq, Cq) can be designed as a minimal

realization, Hkl is nonsingular in k = l. Therefore we obtain:

F = H−1
kl R (9)

Recall f = ΓB(∆Afx + ∆Bfu), and describe the data of

f, x, u after the fault occurrence as

F =

2
664

f(t)
...

δNf(t)

3
775 , X =

2
664

x(t)
...

δNx(t)

3
775

U =

2
664

u(t)
...

δNu(t)

3
775 , Z =

"
X

U

#
.

Then the estimate of parameter change caused by the fault

is calculated as
h

∆Af ∆Bf

i
= Z†F T , (10)

where N is the data number used in estimation, and (∗)†
denotes the pseudo inverse of ∗. Here the nonsingularity of

Z depends on x, u, so the data used in the estimation need

to be selected suitably.

5.2. Evaluation of the estimate

In this section, we evaluate the influence of the estimated pa-

rameter change on the closed-loop system from the viewpoint

of stability. The stability margin is a useful criterion for this

aim, so we compare the stability margin with the variation

caused by the fault according to the following procedure:1)

specify the system as the state feedback system, and calcu-

late the stability margin, described as bP,C below, 2) after

fault occurs, calculate the infinity norm of the variation, de-

scribed as γ below, by using the estimated parameter change,

3) compare these two values obtained above σ = γ/bP,C , and

evaluate the system reliability. The closer to 1 this value σ

is, the closer to failure the system is.

6. Analysis of the proposed method and the
algorithm

In Section 4, and 5, we have described the design method of

the residual generator which also isolates the position, and

the evaluation technique from the viewpoint of stability. In

this section, we analyze the proposed method. Recall the

fault signal f we define in the eq.(3c):

f = ΓB(∆Afx + ∆Bfu), (11)

where ΓB = (BT B)−1BT .

6.1. The restriction for the meaningful diagnosis

Next, we discuss the restriction of the parameter changes

∆Af , ∆Bf for accurate diagnosis. In the proposed method,

the evaluation of the fault is made based on the parameter

estimation and the measure of the stability. From the equa-

tion (11), the meaningful evaluation is implemented only

when x, u are bounded. This means if the system (2) af-

ter the fault occurrence is stable, the meaningful evaluation

is made. Thus the following corollary holds by the small gain

theorem.

Corollary 3: [12] The meaningful evaluation is implemented

if the condition (12) holds.

‖∆‖∞ < bP,C (12)

bP,C := ‖Ē(sI −A−BF )BΓBD̄‖−1
∞ (13)

D̄ =
h

I I
i

Ē =

"
I

F

#

∆ =

"
∆Af 0

0 ∆Bf

#

where F is a state feedback gain stabilizing A + BF .

Proof: See appendix A.

6.2. Algorithm

We now show the algorithm of the proposed method.

Assume that the system (1) satisfies the conditions stated

in Corollary 1, and Corollary 2; in addition, the parameter

change caused by the fault satisfies the stability condition

(12). Then the fault diagnosis system is constructed by the

following procedure:

Step 1. Design the stable pseudo inverse system G+(δ)

according to Section 4.2.

Step 2. Construct the residual generator by selecting

Vru(δ) = −G+(δ)Gyf (δ), Vry(δ) = G+(δ).

Step 3. Calculate the stability margin bP,C based on the

eq.(13).

Step 4. Based on the relation (10) derived by Lemma 1,

estimate parameter change by using the input, the state

signal u, x and the residual r.

Step 5. Calculate the infinity norm of the variation γ

based on the estimated result in Step 4.

Step 6. Display the ratio between bP,C and γ, and indicate

the system reliability from the viewpoint of stability.

7. Numerical example
We show a numerical example in order to illustrate the pro-

posed method. Here we consider the system (A, B, C) given

by:

A =

"
−0.9995 1.997

0 −1.998

#
, B =

"
1

0.999

#
, C =

h
1 0

i
.
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Fig. 2. Residual

This is a δ-model calculated based on the continuous model

A = [−1, 2; 0,−2]; B = [1; 1]; C = [1, 0]; at the sampling time

0.001. Assume that the change of the system (A, B, C) is

caused by the fault at 200 seconds. The parameter changes

∆Af , ∆Bf are selected by:

∆Af =

"
0 0

0 1

#
, ∆Bf =

"
0.5

0

#

The residual generator is designed based on (A, B, C) men-

tioned in Section 4, and suitable state feedback controller

is designed. The stability margin bP,C is calculated as

bP,C = 1.037940. The obtained residual r is shown in Fig.2.

Although a slight delay caused by the dynamics of the resid-

ual generator is observed, it is a preferable response. The

signal f is then calculated by using the relation (9), and

from the calculated F , we estimate ∆Af , ∆Bf based on the

relation (10). From the estimate, the infinity norm of the

variation γ is calculated as γ = 0.004074. The ratio of the

two values σ = γ/bP,C means the stability degree as well as

the influence of the occurred fault on the closed loop system.

Here we have σ = 0.0039. The closer to ”1” this ratio is , the

closer to be unstable the closed loop system is, therefore, we

can see the fault does not influence on the closed loop stabil-

ity so seriously. Thus we can grasp the reliability from the

viewpoint of the closed loop stability just by observing this

rate σ.

8. Conclusion
In this paper, we propose a new FDI method by reducing

the FDI problem for a multiplicative fault to that for an

additive fault. We then detect the fault by using residual

generator consisting of a stable pseudo inverse system. The

residual obtained is used to estimate the parameter change.

The estimated fault is evaluated from the viewpoint of closed

loop stability. The proposed method is effective where the

fault system is stable. Numerical example illustrates the

effectiveness of the proposed method.
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Appendix
A Proof of Corollary 3

　 Let a state feedback u = Fx+v be applied for the system

(1), and A + BF be stable. When the faults occur for the

system, then the system is represented by

δx = (A + ∆Af + BF + ∆BfF )x

+(B + ∆Bf )v (14a)

y = Cx (14b)

We discuss the stability of the system (14). The system (14)

is equivalent to the following system:

δx = (A + BF )x + Bv + BΓBw (15a)

y = Cx (15b)

w = (∆Af + ∆BfF )x + ∆Bfv (15c)

For the discussion of the stability, set v = 0, then we have

the following representation of the system as shown in Fig.3:

δx = (A + BF )x + BΓBw (16a)

y = Cx (16b)

w = (∆Af + ∆BfF )x = D̄∆Ēx (16c)

Then applying small gain theorem to the system (16), we

have the corollary.
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Fig. 3. The equivalent representation of the system (14)
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