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Abstract: In this paper, a real-time optimization method for nonlinear dynamical systems is proposed. The proposed

method is based on the algorithms of numerical solutions for optimal control problems. We deal with a real-time collision-

free motion control of a nonholonomic mobile robot, which has input restrictions of actuators. The effectiveness of the

algorithmic method is demonstrated through numerical and experimental results. The mobile robot which we have

developed is able to avoid moving obstacles skillfully. Therefore the proposed controller works well in real time.
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1. INTRODUCTION

In this paper, a real-time optimization method for non-

linear dynamical systems is proposed. We deal with a

real-time collision-free motion control of a nonholonomic

mobile robot that is practically important and theoreti-

cally difficult to solve. The proposed method is based on

the algorithms of numerical solutions of optimal control

problems.

When solving an optimal control problem for nonlinear

systems, many iterative calculations are required[1],[2].

Because much computation time is required, the conven-

tional controller is designed in a off-line fashion. It is

true that the computation time has been shortened by

development of the recent computer technology. How-

ever, it is not yet sufficient in order to solve the nonlin-

ear optimum control problem in real time for mechanical

systems, which requires fast sampling.

In this paper, to treat input restrictions of the actua-

tors, we advanced our conventional real-time argorithmic

control method[14]. This controller is not designed di-

rectly, but it mounts the algorithm as a controller. This

is called‘ Algorithmic Controller ’. In the proposed al-

gorithmic method, the evaluation section of performance

index is moved on time. Therefore, our method is similar

to the approach of Model Predictive Control (MPC)[4].

The research of the nonlinear model predictive control

(NMPC)[5],[6] has lately attracted considerable atten-

tion. Some efficient algorithm was proposed for real time

control[7],[11]. However, previous method has a problem

on its robustness because of using the open-loop solu-

tion. On the other hand, our method is based on Riccati-

equation-based (REB) algorithm for nonlinear optimal

control problems[3]. Therefore, online feedback control is

possible, because the REB algorithm can calculate feed-

back gain based on Riccati equation.

The effectiveness of proposed algorithmic method is

demonstrated through numerical and experimental re-

sults. It is applied to a differential-driven mobile robot,

where there are input restrictions of actuators and there

exist obstacles. The mobile robot which we developed

is able to avoid moving obstacles skillfully. The numeri-

cal and experimental results show the proposed controller

works well in real time, even in the case of including mov-

ing obstacles.

The outline of the paper is as follows. In Section 2,

the nonlinear optimal control problems are formulated.

Also, one of the computational methods for optimal con-

trol problems is given with its convergence property. In

Section 3, based on the computational method, our algo-

rithmic design method is proposed. In Sections 4 and 5,

simulation and experiment results are given in order to

demonstrate the effectiveness and practicability of our

approach, where the collision-free motion control of a

nonholonomic mobile robot is dealt with.

2. OPTIMAL CONTROL PROBLEM

2.1. Formulation

System equation, initial condition, and performance

index are given as follows.

ẋ(t) = f(t, x(t), u(t)) (1)

x(t0) = x0 ∈ �n (2)

J = G(x(t1)) +

∫ t1

t0

L(t, x(t), u(t))dt (3)

where t0, t1 are initial/terminal time given. Then, our

goal is to find a controller minimizing the performance in-

dex J over a time interval [t0, t1]. Here, denote the state

variable by x(t) = [x1(t), · · · , xn(t)]
T ∈ �n, and the in-

put variable by u(t) = [u1(t), · · · , ur(t)]
T ∈ Rr. Based

on the problem formulation (1) to (3), we describe our

on-line computational design method, that is to say, al-

gorithmic design method.

Before that, we give some preliminaries. Whether or

not the algorithmic design method works would depends

on how effective the algorithm is in searching the numer-

ical solutions of optimal control problems. In this paper,
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we adopt one of the so-called Riccati-equation based algo-

rithms (REB algorithms), which is known to be reliable

and effective in searching numerical solutions. One of the

characteristics is the use of feedback structure in the pro-

cess of computation of solutions. Details are given later.

2.2. Riccati-equation based algorithm

Under the problem formulation (1) to (3), we describe

an iterative algorithm for the numerical solutions of opti-

mal control problems, based on Riccati differential equa-

tions. In this respect, the algorithm falls in the cate-

gory of optimal control algorithms, such as the REB al-

gorithms presented in [1], [3], [8], [9], [10], [12] and [13].

Assumptions

Let x : [t0, t1] → �n be an absolutely continuous func-

tion, and u : [t0, t1] → �r be an essentially bounded mea-

surable function. For each positive integer j, let us denote

byACj all absolutely continuous functions: [t0, t1] → �j,

and by Lj
∞ all essentially bounded measurable functions:

[t0, t1] → �j . Moreover, we define the following norms

on ACj and Lj
∞ respectively:

‖ x ‖ = max | x(t) | for x ∈ ACj, t ∈ [t0 t1]

‖ y ‖ = ess sup | y(t) | for y ∈ Lj
∞, t ∈ [t0 t1]

where the | • | is used to denote Euclidean norms for

vectors.

Now, we make some assumptiions.

(i) G : �r → �1, f : �1 × �n × �r →

�n, L : �1 × �n × �r → �1 are continuous in

all their arguments, and their partial derivatives

Gx(x), fx(t, x, u), fu(t, x, u), Lx(t, x, u) and

Lu(t, x, u) exist and are continuous in all their ar-

guments.

(ii) For each compact set U ⊂ �r there exists some

M1 ∈ (0,∞) such that

| f(t, x, u) |≤ M1(| x | +1) (4)

for all t ∈ �1, x ∈ �n, and u ∈ U .

Algorithm

Step A-0: Let β ∈ (0, 1) and M2 ∈ (0, 1). Select arbi-

trarily an initial input u0 ∈ Lr
∞.

Step A-1: i = 0

Step A-2: Calculate xi(t) with ui(t) from the equation

(1).

Step A-3: Select Ai ∈ �n×n, Bi
11 ∈ Ln×n

∞ , Bi
12 ∈ Ln×r

∞

and Bi
22 ∈ Lr×r

∞ so that Kalman’s sufficient condi-

tions for the boundedness of Riccati solutions hold,

that is, for almost all t ∈ [t0, t1],

Ai ≥ 0, Bi
22(t) > 0,

Bi
11(t)−Bi

12(t)B
i
22

−1
(t)Bi

12

T
(t) ≥ 0 (5)

where Ai, Bi
11 and Bi

22 are symmetric and (·)T

means the transpose of vectors and matrices. We

solve δxi(t), Ki(t), ri(t) from (7), (7), and (8) be-

low,

δẋ(t) = {fx(t, x
i, ui) + fu(t, x

i, ui)Bi −1

22

×(fT
u (t, xi, ui)K(t)−Bi

12

T
)}δx(t)

+fu(t, x
i, ui)Bi

22

T
(fT

u (t, xi, ui)r(t)

−LT
u (t, x

i, ui)), δx(t0) = 0 (6)

K̇(t) = −K(t)fx(t, x
i, ui)− fT

x (t, xi, ui)K(t)

+Bi
11 + (K(t)fu(t, x

i, ui)−Bi
12)B

i −1

22

×(Bi
12

T
− fT

u (t, xi, ui)K(t)), K(t1) = −Ai

(7)

ṙ(t) = −fT
x (t, xi, ui)r(t) + LT

x (t, x
i, ui) + {Bi

12

−K(t)fu(t, x
i, ui)}Bi

22

−1
(−LT

u (t, x
i, ui))

+fT
u (t, xi, ui)r(t)), r(t1) = −G(x(t1))

(8)

and determine δui from the following.

δui(t) = Bi
22

−1
{((fT

u (t, xi, ui)Ki(t)−Bi
22

T
))δxi

+fT
u (t, xi, ui)ri(t)− LT

u (t, x
i, ui)} (9)

Step A-4: Determine (x̃i, ũi) satisfying

ẋ(t) = f (t, x(t), u(t)), x(t0) = x0 ∈ �n

Hi(t, (x− xi), (u− ui), pi)

= maxv∈�r Hi(t, (x− xi), (v − vi), pi)

where

Hi(t, δx, δu, p)

= −{Lx(t, x
i, ui)δx+ Lu(t, x

i, ui)δu

+ 1

2
(δxTBi

11δx+ 2δxTBi
12δu+ δuTBi

22δu)}

+pT (fx(t, x
i, ui)δx+ fu(t, x

i, ui)δu)

and pi is a solution of the followings.

ṗ(t) = −fT
x (t, xi, ui)p(t) + LT

x (t, x
i, ui)

p(t1) = −GT
x (x(t1))

Step A-5: αi = 1.

Step A-6: Set ui+1(t) = ui(t) + αiδu
i(t) + α2

i (ũ
i(t)−

ui(t)−δui(t)). if (10) holds, go to Step 7. Otherwise,

set αi = βαi and repeat Step 6.

J(ui+1)− J(ui) ≤ αiM2{G(xi(t1))δx(t1)

+

∫ t1

t0

(Lx(t, x
i, ui)δxi + Lu(t, x

i, ui)δui)} (10)

Step A-7: Set i = i + 1, and go to Step A-3. Repeat

Step A-3 to Step A-7 until the performance index J

converges. Here, the integer i represents the number

of iterations.

2.3. Convergence

We can prove the convergence property of the algo-

rithm described in the previous subsection. The theorem

below tells us that accumulation points generated by Al-

gorithm, if they exist, satisfy the necessary conditions for

optimality. See [3] for more details.

Theorem (convergence)

Let {Ai}∞i=0, {B
i
11}

∞
i=0, {B

i
12}

∞
i=0, {B

i
22}

∞
i=0, {u

i}∞i=0,

{ũi}∞i=0 and {δui}∞i=0 be sequences generated by the

above-mentioned algorithm. Suppose that there exists

M4 ∈ (0, ∞) such that, for almost all t ∈ [t0, t1],
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| ũi |≤ M4 and | δui |≤ M4, i = 0, 1, 2, · · · and also

suppose that exist Ā ∈ �n×n, B̄11 ∈ Ln×n
∞ , B̄12 ∈ Ln×r

∞ ,

B̄22 ∈ Lr×r
∞ , ū ∈ Lr

∞ and a sequence N ⊂ (0, 1, 2, 3, · · ·)

such that Ā ≥ 0, B̄11(t)− B̄12(t)(B̄22(t))
−1(B̄T

12(t)) ≥ 0

for almost all t ∈ [t0, t1]

limi∈N Ai = Ā in the norm of �n×n

limi∈N Bi
11(t)(resp.,B

i
12(t), B

i
22(t))

= B̄11(t)(resp., B̄12(t), B̄22(t))

in the norm of Ln×n(resp., Ln×r
∞ , Lr×r

∞ )

limi∈N ui(t) = ū(t) in the norm of Lr
∞

Here, Ā, B̄11 and B̄22 are symmetric. Then, ū(t) sat-

isfies the weak necessary condition for optimality

Hu(t, x̄(t), ū(t), p̄(t)) = 0 a.e.in t ∈ [t0, t1]

where H(t, x, u, p) = −L(t, x, u) + pT f(t, x, u), x̄(t) is a

solution of (1) with ū, and p̄(t) is a solution of the fol-

lowings.

ṗ(t) = −fT
x (t, x̄, ū)p(t) + LT

x (t, x, u)

p(t1) = −GT
x (x̄(t1))

3. ALGORITHMIC DESIGN

The key idea is very simple. Roughly speaking, all we

have to do is to proceed with such above-mentioned al-

gorithm by one iteration only, periodically. This means

that as time passes the number of iterations increases.

That is, through sufficiently large number of iterations,

it could be expected to eventually reach the possible op-

timal solutions[14]. More detailed explanations are given

in the following description.

From a practical point of view, the calculation time

for one-iteration-ahead solution is assumed to be equal

to ∆T [ms] (or less than ∆T ). The calculation time ∆T

plays a key role in our design method. We here describe

how well the algorithmic controller works, together with

Fig. 1.

Algorithm

Step B-1: Measure an actual state x0, and select arbi-

trarily an initial input u0. Set the unit of calculation

time ∆T [ms], and apply the input u0 to the plant

over the interval of the first unit time of calculation.

During the interval (say, Section 1), proceed with

Fig. 1. Optimal/Actual trajectory

two kinds of calculation. One is to predict the one-

unit-time-ahead state x̂1 through system equation

(1) with the initial state x0, and the other is to cal-

culate over [∆T, t1] the one-iteration-ahead solution

(say, Optimal trajectory 1) with the updated initial

state x̂1 as a new initial state. Then, denote by k1

the feedback gain

−B−1

22 {fu(t, x, u)
TK +BT

12},

and by u1 the input associated with Optimal trajec-

tory 1.

Step B-2: Measure the actual state x1, and apply the

input u1 together with the feedback gain k1 to the

plant over the interval of the second unit time of cal-

culation. During such interval (say, Section 2), pro-

ceed with two kinds of computation. One is to pre-

dict the one-unit-time-ahead state x̂2 through the

system equation (1) with the state x1. The other is

to calculate over [2∆T, t1] the one-iteration-ahead

solution (say, Optimal trajectory 2), using x2 as the

new initial state. Then, denote by k2 the feedback

gain.

−B−1

22 {fu(t, x, u)
TK +BT

12}

and by u2 the input corresponding to Optimal tra-

jectory 2.

Step B-3: Apply to the plant the input u3, u4, · · ·.

4. NUMERICAL SIMULATIONS

A. Modeling

We demonstrate the effectiveness and practicability of

our algorithmic controllers by applying them to the con-

strained optimal control problems, such as differential-

driven mobile robot. The model of differential-driven mo-

bile robot is shown in Fig.2. The torque of actuators are

usually limited and thus we need to find a solution under

the constrained conditions. System equation is given as

follows.

χ̇ =
dχ

dt
=

1

2


 cos θ cos θ

sin θ sin θ

1/W −1/W




(
uR

uL

)
(11)

χ =
[

χ1 χ2 χ3

]T
=
[

x y θ
]T

(12)

Denote by x, y and θ the position and angle of the

mobile robot, by uL and uR the verosity of the left/right

Fig. 2. Differential-driven mobile robot
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Fig. 3. Obstacles

Table 1 Value of Obstacle Parameters

j (Xj, yj) (βxj , βyj) Rj

S

1 (−0.7, 0.2) (80, 20) 200

2 (−0.3,−0.6) (80, 20) 200

3 (−0.2, 0.1) (100, 100) 200

4 (0.3,−0.1) (100, 70) 200

5 (0.6, 0.4) (80, 80) 200

wheel. The control input vector u is given as u = [v w]T.

B. Performance Index

Basically, the performance index is as follows.

J = ξTPξ |t=t1 +
1

2

∫ t1

t0

(ξTQξ + uTRu)dt (13)

ξ = [ x− xr y − yr
√

−cos(θ − θr) + 1 ]T (14)

where P , Q and R are weight matrices.Denote by xr,

yr and θr the target position and angle of the robot.

Here, setting the limitation on input vector by ulim =

[0.25m/s 0.25m/s]T, we introduce the following perfor-

mance index.

J̃ = J +

∫ t1

t0

rL(0.25
2 − u2

L)
−1 + rR(0.25

2 − u2
R)

−1dt

(15)

The weighting parameters are denoted by rL and rR.

C. Obstacles

Here, we consider a problem where there exist obstacles

Fig. 4. Calculation time

Fig. 5. Trajectory of mobile robot

Fig. 6. State trajectory [x]

Fig. 7. State trajectory [y]

Fig. 8. State trajectory [θ]

Fig. 9. Control input [uL]

Fig. 10. Control input [uR]
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in the movable region. Definition of the obstacles are as

follows.

Ωj(x, y) = Rj

Sexp(−(x−Xj)2βj
x − (y − Y j)2βj

y) (16)

The position of obstacles are denoted by Xj and Y j.

The shape of obstacle is characterized by Rj

S, β
j
x and βj

y

parameters. The suffix j denotes the number of obstacles.

We redefine performance index as follows.

J̄ = J̃ +

∫ t1

t0

∑
j

Ωjdt (17)

The calculation load increases, when the number of the

obstacle increases. So, we only consider the obstacles

which are close to the robot.

D. Numerical Simulation Results

General PC is used for the simulation, and its specifi-

cation is CPU: 2.53GHz, RAM: 512MByte. Multi-thread

programming is used for simulator program.

Table 1 describes the condition of the obstacles for

a numerical simulation. The interval of the right and

left wheel is 2W = 0.128[m]. Here, we set t1 = 1.0[s],

and let the final time t1 move as time goes by. The

computation time for one-iteration-ahead solution is set

by ∆T = 100[ms]. The simulation results are shown

in Figs. 4-10. The computation time for controllers in

each section is sufficiently fast. Though the control in-

put became discontinuous, good control performance is

obtained. The mobile robot is able to avoid the moving

obstacles skillfully. Therefore, it is possible to execute

this algorithm in real time. The simulation results show

the proposed controller works well in real time, even in

the case of including moving obstacles.

5. HARDWARE EXPERIMENT

A. Experimental System

We demonstrate the effectiveness and practicability

of our algorithmic design method by applying it to the

hardware experimental system. Here, the experimental

system which we developed is described. The outline of

developed experimental system is shown in Fig. 11. The

condition of the mobile robot is observed using the out-

side fixed point camera. In this system, coordinate and

angle of the robot can be measured by observing the light

source of two LEDs of upper surface of the robot. The

video signal of CCD camera is taken in using capture card

on PC. The specification of the experimental equipment

is shown in table 2 and the outline of developed robot is

shown in Fig. 12.

B. Experimental Results

We consider one obstacle which randomly moves. The

initial state of the robot is measured and the target state

is set to [xr yr θr] = [0 0 0]. Other condition is same

as the simulation. The experimental results are shown

in Figs. 13-18. The mobile robot which we developed is

able to avoid the moving obstacles skillfully. They show

the proposed controller works well in real time, even in

the case of including moving obstacles.

Fig. 11. Outline of developed experimental system

Fig. 12. Outline of developed robot

6. CONCLUSION

A design method for real-time calculation of con-

strained nonlinear optimal control problems is proposed.

Our algorithmic method realizes dynamic optimization in

real time for nonlinear systems. The proposed method

is based on the optimal control algorithms. Whether or

not the real-time computation works depends on how ef-

fective the algorithm is. Therefore, adopt the REB algo-

rithm. It is applied to a differential-driven mobile robot,

where there are input restrictions of actuators and there

exist obstacles. The mobile robot which we developed

is able to avoid moving obstacles skillfully. The numeri-

cal and experimental result show the proposed controller

works well in real time, even in the case of including mov-

ing obstacles.

Table 2 Specifications of the experimental system

ACTUATOR

Gear Ratio 21：1

DC MOTOR
Voltage 12 [V]

Torque 2.5 [Ncm]

Speed 80 [rpm]

COMMUNICATION

Wireless module
Baud rate 9600 [bps]

Packet Length 16 [byte]

OBSERVING SYSTEM

CCD Camera
Total pixels 0.25 [megapixels]

Frame rate 29.97 [fps]

2106



Fig. 13. Trajectory of mobile robot

Fig. 14. State trajectory [x]

Fig. 15. State trajectory [y]

Fig. 16. State trajectory [θ]

Fig. 17. Control input [uL]

Fig. 18. Control input [uR]
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