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Abstract : In this paper,  designs for the one-degree-of-freedom decoupling control systems are 

treated for the generalized plant. The optimal  controller is obtained together with the ones that yield 

finite  cost functions under compact assumptions.  It is shown that the optimal closed transfer matrix 

is strictly proper under the reasonable order assumptions on the generalized plant.
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1.  Introduction 

  Decoupling control system design that 

eliminates coupling interactions between the 

various reference and manipulated signals has 

been the interest of many researchers. Desoer 

and Gundes (1986), Lee and Bongiorno (1993) 

and Park et. al.(2002) solve the 

two-degree-of-freedom decoupling problems. 

The decoupling problem for the 

one-degree-of-freedom control system is 

treated by Gomez and Goodwin (2000), Youla and 

Bongiorno (2000) and Bongiorno and 

Youla(2001). Gomez and Goodwin(2000) treat 

both partial and diagonal decoupling designs by 

adopting an algebraic approach based on coprime 

factorizations. A notable feature of the work by 

Youla and Bongiorno (2000) is that the solvability 

condition and the characterization of the all 

decoupling closed loop transfer matrices  are 

explicitly expressed in the most effective way. 

They also consider the optimal designs for the 

persistent inputs which include the most practical 

signals such as step or ramp functions. In this 

paper, the work of Youla and Bongiorno(2000) is 

extended to the generalized plant.

  Throughout the paper, only real rational 

matrices are considered. The notation ∥∥ 
denotes the    norm of the transfer 

matrix  . A rational matrix  is called 
stable if it is analytic in  ≥ . The 

notations     are used for the 
transpose and determinant of , respectively. 

The notation ∗ stands for 
 . In the 

partial fraction expression of  , the 
contribution made by all its finite poles in 

 ≤       and by its pole at  ∞ are 
denoted by    and ∞ , respectively. 

The order relationship ≤  means that 

no entry in  grows faster than  as 
→∞. A diagonal matrix  with  in the    

row, column is denoted by 

   …   or simply by   . 
The Schur product of two matrices is denoted 

as ∘ and is the matrix whose row,   

column  is given by  . The Kronecker 

product of two matrices is denoted as ⊗ 
and is the matrix whose  block is given by 

 . The vector    
  

 …  
   is 

formed by stacking all the columns of the 

matrix . The Khatri-Rao product of two 
matrices is denoted as ⊙ and is the matrix 
whose -column is given by ⊗  where   

and  the -column of  and -column of , 

respectively. For a diagonal matrix 
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    …  , the vector 

     …  
 is formed by stacking all 

the diagonal elements of the matrix . When 
 is a diagonal matrix,     

⊗   ⊙  (Brewer, 

1978). A rational matrix  is said to be 

biproper if both  and  are proper.

2. Formulation of the decoupling control 

problems

 The plant model under consideration is given 

in Figure 1.

    Figure 1. The general plant model

  The exogenous inputs are divided into two 

variables of the reference input  and the 

other exogenous inputs  . The variables 

    are the plant input, the 

regulated variable and the controller input, 

respectively and the transfer matrix of the 

general plant is given by

      


 



 












 with 




 


  

  
    (1)

  When the plant satisfies the following 

assumption, called admissibility condition, a 

stabilizing controller exists(Park and 

Bongiorno,1989):

Assumption 1: The general plant  block  
is free of hidden modes in      ≥  and 


  

.     

  The notation  denotes the characteristic 

denominator(Youla et al, 1976) of the rational 

matrix  and  
 absorbs all the zeros in 

 ≥ . 

  Decoupling design is to make the transfer 

matrix from the reference input to the plant 

output diagonal and invertible. In the general 

plant model, however, the plant output does 

not explicitly appear and hence, careful 

consideration is needed to formulate a 

meaningful decoupling problem. For 1DOF 

controller configuration with unity feedback, 

the controller input is usually the difference 

between the reference input  and the plant 

output, say  , possibly with sensing noises 

and disturbances  added. Since the controller 

input is embodied by  in the general plant, 

it can be written as 

                                          

            (2)

  Since     , we conclude that 

    . The target transfer matrix to be 

diagonalized is   and hence    

     
  is the target matrix. Next, 

we make an assumption that can characterize 

1DOF controller configuration. From (1), we 

see that      . Comparing 

this equation to (2), we can match the 

variables as   and     and 

this leads the assumption that   . Hence 

the target matrix is 

        
     

 . In 

summary, we formulate the decoupling control 

problem for 1DOF controllers as the one of 

finding the stabilizing controllers that make the 

transfer matrix 

                                                 

            
             (3)

diagonal and invertible with the following 

assumption;

Assumption 2: The matrix  is square and 

invertible, and   .

  A rational matrix  is said to be 
realizable for the plant  if the 

corresponding controller   in (3) stabilizes 
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the feedback system in Figure 1. A controller 

 is said to be decoupling for the plant 
 if it stabilizes the loop and produces a 

diagonal  with  ≠ . 

Lemma 1: A rational matrix  is realizable 
if and only if the four matrices 

 
 

  and     are stable 

with    ≠  .

  The following lemma describes the existence 

condition of a decoupling controller and the 

proof of the lemma can be seen in Youla and 

Bongiorno (2000). Let us first define two 

polynomials to describe the decoupling 

condition. Let the  column of 
  and 

the  row of  be denoted by   

and   , respectively. Let   and   

denote the unique monic polynomials of the 

minimal degrees such that      and 

    are stable, respectively.

Lemma 2 (Youla and Bongiorno, 2000): A 

decoupling controller for the plant  exists 

if and only if  1) the polynomials   and 

  are coprime for  → and  2) the 

unique data construct  
  is 

stable where      and 
the polynomial   is such that

               →            (4)

  The existence of such   and   is always 

guaranteed if   and   are coprime. When a 

decoupling controller exists, any realizable 

diagonal transfer matrix  is given by 

                             (5)

where   and  is an arbitrary 
stable diagonal matrix chosen so that 

   ≠ .

3.  optimal design problem

  In this section, we formulate  design for 

the decoupling controllers. To allow the 

persistent exogenous inputs, we assume that 

the reference input  and exogenous input 

 are generated by 

           and    ,    (6)

where the vectors  and  behave in 

impulsive forms. Inserting (6) into (1), we 

obtain



 



 














 with  



 


   

   
 (7)

Define       and 

      so that  



 




 
 

. Let 

the transfer matrix from     to  be 
denoted by   . Our problem is to find the 

decoupling controller in (5) that minimizes 

∥∥. Since we deal with the 1DOF 
controller, we assume the following one whose 

explanation is well presented in Park (2005);

Assumption 3:  
  



The following assumptions guarantee that the 

optimal decoupling controller exists.

Assumption 4:    and   are strictly 

proper.

Assumption 5: ∗ ≠  on the 

finite part of the   , where 

 
 .

Assumption 6:  ∗ ≠ on the 

finite part of the   where 

  
 .

Assumption 7:  The order relationships 

∗ 
≤  

   
∗

  ≤ 
   

and ≤ 
  are satisfied with 

 ≤ .

  Let  be the Wiener-Hopf spectral factor 

of the equation

⊙∗
⊙ ∗

∘∗      
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                      ∗           (8)

and define

        
⊙ 

 and                  

      
 


             (9)

For later use we present the following lemmas 

whose proofs can be seen in Appendix.

Lemma 3: Suppose that Assumptions 1-3 are 

satisfied and the plant  admits a 

decoupling controller (Lemma 2). The matrices 

  and   are stable.

Remark: When the plant  admits a 

decoupling controller and Assumptions 1-6 are 

met,  and  are stable and  is inner. 

Lemma 4: Let  and  be ×  rational 
matrices and suppose that the inverses 

     and ∘  exist. If 

 ≤ 
   and  ≤  

  , then 

∘  ≤  
  .

Now we present the main results on the   

problem.

Theorem: Suppose that the general plant is 

admissible (Assumption 1) and the plant  

admits a decoupling controller (Lemma 2). 

Under Assumptions 2~7, the class of all 

decoupling closed transfer matrices that yield 

finite cost ∥∥is given by 
     

       
      (10)

where   ∗ 
,   

 and 

  is an arbitrary stable vector ≤ 
 .  

In this case,  in (10) is strictly proper and 
the corresponding controller  can be 
obtained form (3). The optimal controller is the 

one with    and the cost  for the 

controller (10) is  given by 

    ∥∥ ≥ , where  denotes the  
cost for the optimal controller. 

Proof: Notice that   

      
 

 
  

and inserting the realizable formula for  in 
(5) into the above equation yields 


  


  

  
 

     .  Since the vectorization does 

not affect the  norm,   ∥∥  
 ∥ ∥   ∥   ⊙ ∥. 
Since  is inner, there exists a complementary 
inner ⊥  such that  ⋯⊥   is square inner. 
Notice that  ⋯⊥   is stable and proper. It 
now follows that 

 ∥    ⊥  

 

 ∥             
 ∥ 


∗

⊥∗
 



 


  

 ∥              
       ∥ 


∗    

⊥∗   ∥       (11)
  Hence, minimization is achieved by taking 

   
 ∗    ∗  ∞  . 

We will show that   is stable and the 

cost function in (11) is finite. In view of 

Lemma 3,   is obviously stable. The  

norm of the matrix in (11) is finite if and only 

if two elements of the matrix in (11) is 

analytic on the finite part of the   

(this analyticity will be called J-analyticity in 

the sequel ) and    . When   is 
used, the first element becomes ∗   , 

which is J-analytic and    . The second 
element is obviously J-analytic since ⊥  and 

 are J-analytic. Next, it will be shown that 

⊥∗     is strictly proper. Since 

 ⋯⊥   is square inner, it follows that 

⊥∗     and hence ⊥∗ 
⊙  . 

Notice that  

    
  


  

   
⊙   

 . Hence 

⊥∗     ⊥∗
  and this is strictly 

proper by Assumption 4. 

  As for the finite-cost yielding formula, once 

the optimal stable   is determined we can 

express the free parameter  in (5) as 

  where  now becomes a free 
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stable parameter. Substituting this  into the 

first element of the matrix in (11), we obtain 

∗      ∗    

where    .  In order for this term to 

have finite  norm,   should be stable and 

≤  . Hence   
 and this 

yields the formula 

    ∗    ∗ ∞
   . The cost function equality 

    ∥∥ comes from the fact that 
∗   and  are orthogonal in  

space of complex valued functions. 

  Next, since ∗   , it follows that 

    ∞   

 ∞  
     

 
     . Hence, 

        +

  = 
    .

  It will be shown next that  in (10) is 
strictly proper. The spectral factor  will 

be obtained in a different form from the one in 

(8). Define   , where   is an 
arbitrary strict Hurwitz polynomial whose 

degree is the same as that of  . Then 


   with  . Notice that 

  is bi-proper and 

 is stable. Define  

and   similarly so that 
 with   

bi-proper and 
 stable. Eq. (8) becomes 

∗  ∗
∗
 

∘  

∗∗
 ∗

   ∗∗
∗
 

 

∘ ∗
 ∗

  
∗
∗

 

wth   ∗
∗
 



∘ ∗∗
 ∗

  . Consider the 

spectral factorization  ∗ . Then it 

follows that     and hence 

   





  . In 

view of Lemma 4, it is not difficult to show 

that 
≤ 

  , which is proper by 

Assumption 7. Since 

  and 


  are 

proper and    is strictly proper, 

 is strictly proper.  Q.E.D.

4. Conclusion

  In this paper,  designs for the 

one-degree-of-freedom decoupling control 

systems are treated for the generalized plant. A 

structural assumption on the general plant is set 

to exploit the characteristics of the 

one-degree-of-freedom controller configuration 

and the class of all realizable closed loop transfer 

matrices is parameterized. The optimal  

controller is obtained together with the ones that 

yield finite  cost functions under compact 

assumptions.  It is shown that the optimal closed 

transfer matrix is strictly proper under the 

reasonable order assumptions on the generalized 

plant.
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Appendix

  As a preliminary for proofs of Lemmas 1 and 

3, we present the formula of all stabilizing 

controllers. When Assumption 1 is satisfied, 

the class of all stabilizing controllers can be 

parametrized. Let       

 
 be polynomial coprime fractional 

expressions. There always exist polynomial 

matrices    and  such 

that  



 


 

 




 


 

 



 


 

 
 with  ⋅

≠ . In this case  the class of all 

stabilizing controllers is characterized by the 

YJB formula(Youla et. al., 1976) 

     
 with  

arbitrary real rational stable matrices and 

   ≠ . 

Proof of Lemma 1: In view of the above YJB 

formula, it can be concluded that a rational 

matrix  is realizable if and only if it is of the 
form   which is obtained by 

inserting the YJB formula for  into the 

equation      
 . (Necessity) 

When  is of the form  ,  

being stable, it is obvious that  
 and 

 
 are stable, where use 

is made of the fact that . Since 


  is stable, 

 is 

stable. Since  ,  
 

and hence   are stable and 

 ≠  because of the constraint 

   ≠ . (Sufficiency) For a given 

rational matrix  , suppose that 

 
 

  and     are stable 

and  ≠ . Resolving the equation 
  for , we obtain 

 


 
. If this  is stable, 

then  is realizable. First,  
 

is stable since 
  is stable. Next, 

       

  is stable since     is 
stable. That   and  are stable implies 

that  is stable. The constraint  ≠  
assures that    ≠ .

Proof of Lemma 3:  First notice that 

Assumption 3 is equivalent to the condition 

that   
   and 

  are 

stable (Nett, 1986). From the definition of  , 


  and hence 

  are stable so that 

   
  

 is stable. 

From the definition of  ,   and hence 


  are stable so that   



 
  is stable. Next, 






   


 . 

Inserting the equalities 
    

  

and       yields 

   
 




    
 


 - 

⋅


, which is stable since 

  
  is stable by Assumption 3 

and 
  and hence 


  are 

stable when  admits a decoupling controller 

(Lemma 2).
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