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ABSTRACT
This paper presents a non-destructive evaluation (NDE) technique for detecting damages
on a jointed steel plate on the basis of the time of flight and wavelet coefficient,
obtained from wavelet transforms of Lamb wave signals. Support vector machines
(SVMs), which is a tool for pattern classification problems, was applied to the damage
estimation. Two kinds of damages were artificially introduced by loosening bolts located
in the path of the Lamb waves and those out of the path. The damage cases were used
for the establishment of the optimal decision boundaries which divide each damage
class’s region from the intact class. In this study, the applicability of the SVMs was
investigated for the damages in and out of the Lamb wave path. It has been found that

the present methods are very efficient in detecting the damages simulated by loose bolts

1.Introduction

Conventional non-destructive evaluation (NDE) techniques such as ultrasonic testing
and X-radiography can provide significant details about the nature of damage. However,
those techniques usually require direct access to the structure and involve bulky
equipments. Moreover, the techniques usually require disruptions of the operation of the
structures/equipments, which is not attractive for on-line structural health monitoring.

To overcome those limitations, two PZT-based damage detection strategies have been
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considered: (a) impedance-based method and (b) Lamb wave-based method. For the
impedance-based method, a successful application to a steel member has been reported
by Park et al. (2004) [1]. The Lamb wave-based approach using a through-transmission
method has been utilized by identifying the changes in the transmission velocity and
energy of the elastic waves associated with damages (2]. In this study, a robust wavelet
transform technique is explored for detecting changes in the dispersive Lamb waves
before and after damages on a steel member. More specifically, the time of flight (TOF)
and wavelet coefficient (WC) are used for identifying the local damages. In the cases of
damages located in the path of Lamb wave (damages in path, DIP), it is observed that
the TOF is delayed further and the WC gets reduced more, as damage becomes severer.
However, it has been found that damages out of the Lamb wave path (damages out of
path, DOP) do not cause significant changes. In order to overcome this limitation and
enhance the damage detection capability, probabilistic decision making techniques are
employed, where optimal decision boundaries may be determined to divide the damage
regions from the undamaged region.

In the present study, support vector machines (SVMs) is employed to estimate
structural damages In a steel member simulated by loose bolts. The goal of this study
i1s to develop a comprehensive methodology for on-line monitoring of damages in steel
members in civil structures. The results of experiments and signal processing/pattern
recognition are presented to substantiate the feasibility of the proposed methodology for |

on-line health monitoring of structural component.
2.Basicsof LambWaves

Lamb waves refer to elastic perturbations propagating in a solid plate (or layer) with
free boundaries, for which displacements occur both in parallel and perpendicular to the
direction of wave propagation. (Viktorov, 1967) [3]). This type of wave phenomenon was
first described in theory by Horace Lamb in 1917. There are two groups of waves,
symmetric and anti-symmetric, that satisfy the wave equation and boundary conditions
and propagate independently of each other. A graphical representation of those two
groups of waves can be seen in Figure 1. The waves may propagate over distances of
several meters along a plate-like structure depending on the material and geometry of
the structure. If a set of transmitting and receiving transducers are placed on a
structure, the received signal contains information about the integrity along the wave
path between two transducers. Therefore, the present method may be used to monitor a

path rather than a point, and considerable savings in testing ‘time may be obtained.

- 332 -



Since Lamb waves induce stresses throughout the plate thickness, the entire thickness
of the plate can be interrogated. Unfortunately, however, Lamb wave testing gets
complicated by the dispersive nature of the Lamb waves. Figure 2 shows the dispersion
curves obtained theoretically for the Lamb waves propagating in a steel plate. The
diagram shows that many wave components with different group velocities exist at the
high frequency range. Therefore, if a structure is excited by a broadband pulse, many
wave components with different frequencies will travel at different speeds and the pulse
shape will change as it propagates along the plate. So, attempts have been made to
limit the bandwidth of the excitation to a low frequency range over which there exist
only two fundamental modes (A¢ or Sp). An investigation on the dominance of the
fundamental Lamb modes over the proper frequency range for the steel members was
reported [4]. In the present study, the only Ao mode is intentionally utilized and
investigated. A propagating wave is reflected and/or partially transmitted, when it
encounters a defect or boundary. Then the measured Ay mode may be compared with
the calculated dispersion curves for the intact case, and damage detection can be carried

out based on both the attenuation and the time delay of the wave component.

T
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Figure 1. A Mode and S Mode of Lamb Waves Figure 2. Lamb Wave Dispersion Curves for A Steel Plate
(Thickness: 2mm)
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3.PatternRecognitionforOnlineHealthMonitoring

3.1BasicsofPatternRecognitionforStructuralDamageDetection

The number of sensors required for monitoring a component very much depends on
the geometry of the component to be monitored. Monitoring damage in a simple plate
may require only a small number of sensors. In a complex structure with thickness
changes, holes and notches, however a larger number of sensors may be needed, which
may require a multi-sensor architecture with optimum sensor/actuator location, actuator
input, sensor output, feature selection and reliable automated signal processing
techniques. In excess, such a multi-sensor architecture needs to have a built-in

redundancy so that the damage monitoring system may remain operational though one
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or more sensors may fail. The respective overall chain of processing is summarized in

Figure 3.
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Figure 3. Pattern Recognition for Structural Damage Detection

Data pre-processing forms an important element of the pattern recognition procedures
for structural damage detection. It often includes smoothing/de-noising procedures,
normalization, trend analysis and reduction of outliers. The level of noise in the data
may be reduced by local or global averaging. An alternative approach may be offered by
smoothing and de-noising procedures. There exist a number of low-pass filters which
can be used to smooth the data. This includes optimal smoothing procedures such as:
the Wiener filter based on the Fourier analysis, and Savitzky-Golay, least-squares and
digital smoothing polynomial filters. Recently, de-noising procedures based on the
orthogonal wavelet transform have been developed [5]. Thresholds or attenuation can be
applied to the wavelet coefficients to remove the noise from the data. The other
pre-processing procedures are more or less related to removal of unwanted features
from the data. Normalization identifies relationships between measurements and features.
Trends show unwanted temporal relationships in the data. Outliers are feature patterns
which are statistically far from the normal selection of patterns used for training. They
can lead to poor generalization of the learning process. Qutliers can be eliminated using
standard statistical analysis.

Features are any parameters extracted from the measurements through signal
processing in order to enhance the damage detection. The choice of features involves a
trade-off between the computational feasibility associated with low-level features and
extensive pre-processing required for high-level features. Feature extraction includes
either signature or advanced signature analysis. Signature analysis employs simple
feature extraction methods, based on data reduction procedures, which lead to scalar
representations. This iIncludes for example statistical spectral rriornents, physical

parameters of the analyzed system or modal based criteria. Advanced signature analysis
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uses sets of features in the form of vectors or pattern representations such as: spectra,
~envelope function or amplitude of the wavelet transform. A number of advanced
signature analysis procedures have been developed in the past few years. This includes
time-frequency and time-scale methods. Feature selection is a process of choosing input
for pattern recognition in order to reduce a number of features for training and therefore
to reduce dimensionality of feature space. In this study, for the efficient feature
selection, the wavelet transform isutilized as a way of obtaining the both TOF (time of
flight) and WC (wavelet coefficient) on the time-frequency plane.

A set of features given by continuous, discrete or discrete-binary variables which are
formed in vector or matrix representatiori is called a pattern. Patterns represent different
conditions of an analyzed structure. Therefore damage detection can be regarded as a
problem of pattern recognition. Classical methods of pattern recognition use statistical
and syntactic approaches. Statistical pattern recognition assigns features to different
classes using statistical density functions. Syntactic pattern recognition classifies data
according to its structural description. In recent years neural networks have been
established as a powerful tool for pattern recognition. A number of different network
architectures for pattern recognition include: feed-forward, recurrent and cellular
networks. The architecture and process of training a neural network depends on which
level of damage identification is required. An unsupervised scheme (Kohonen networks)
offers a possibility of novelty detection. Methods of novelty detection based on neural
networks and outlier analysis use a description of normality using features representing
undamaged conditions and then test for abnormality or novelty. A supervised learning
scheme (Multi-Layer Perceptron, Radial Basis Functions) is required for location and
severity of damage [6-7]. In the present study, as an example of damage estimation by

supervised learning scheme, support vector machines (SVMs) is applied to the detection

of damages on a jointed steel specimen.

3.2Wavelet TransformforFeatureExtraction

The Fourier transform decomposes a signal into its various frequency components. As
it uses the sinusoidal basis functions that are localized in frequency only, it loses the
transient feature of signals. Therefore, it is necessary to implement the time-frequency
analysis for diagnostics of transient signals induced by the impulse loading. In
time-frequency analysis, the short-time Fourier transform calculates the local spectral
density using windowing techniques to analyze a small section of the signal at a time.
However, it has a higher resolution in the frequency domain but a lower resolution in

the time domain. Moreover, it is impossible to simultaneously achieve high resolution in
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time and frequency. In order to overcome the limitations of harmonic analysis, it has
been considered to use alternative families of orthogonal basis functions called wavelets.

The continuous wavelet transform (CWT) decomposes a signal into time and frequency
domain by the dilatation of a wavelet w(t) given in the following equation, where
c_ontin_uous variables @and b are the scale and translation parameters, respectively [8].

W (.= [ x0T W

where the ‘asterisk (%) denotes the complex conjugate. In the present study, "Gabor
wavelet” is employed as a way of the wavelet transform for the efficient feature

extraction.

3.3SupportVectorMachine (SVM)-basedDamageEstimation

The Support Vector Machine (SVM) is a mechanical learning system that uses a
hypothesis space of linear functions in a high dimensional feature space (Vapnik et al,
1995) [9]. The simplest model is called Linear SVM (LSVM), and it works for data that
are linearly separable in the original feature space only. In the early 1990s, nonlinear
classification in the same procedure as LSVM became possible by introducing nonlinear
functions called Kernel functions without being conscious of actual mapping space. This

extended technique of nonlinear feature spaces is called Nonlinear SVM (NSVM) shown
in Figure 4. Assume the training sample S consisting of vectors Xi €R"  with
i=1,.,N . and each vector *i belongs to either of two classes thus is given a label

Vi € {“ 131} . The pair of (W,0) defines a separating hyper-plane of equation as follows:

S =((x1s 7 pes (x5 yn ) (2)
(W-x)+b=0 (3)

where W and & are arbitrary constants.

However, Equation (3) can possibly separate any part of the feature space, therefore one

needs to establish an optimal separating hyper-plane (OSH) that divides S leaving all

the points of the same class on the same side, while maximizing the margin which is
the distance of the closest point of S. The closest vector ¥i is called support vector

and the OSH (WD) can be determined by solving an optimization problem. The

resulting SVM is called Hard Margin SVM. In order to relaxthe situation, Hard Margin

SVM is generalized by introducing non-negative slack variables §=(51:62>--68)  as

follows:
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Minimize ~Margin d(w')= —%(w‘- w)+CY £,

Subjectto  y,((w"x,)+b')21-¢, =12, . ,N, £20. (4)

The purpose of the extra term of the CXSi  where the sum of i=L.wNis to keep

¥

under control the number of misclassified vectors. The parameter C can be regarded as

a regularization parameter. The OSH tends to maximize the minimum distance of 1/ w

with small C, and minimize the number of misclassified vectors with large C. To

solve the case of nonlinear decision surfaces, the OSH is carried out by nonlinearly

transforming a set of original feature vectors Xi into a high-dimensional feature space
by mapping ®:X; P Z; and then performing the linear separation. However, it requires

an enormous computation of inner products (®(x)-P(X;)) in the high-dimensional
feature space. A Kernel function that satisfies the Mercer’s theorem given in Equation
(5) significantly reduces this process. In this study, a radial basié function machine

with convolution function given in Equation (6) was used as the kernel function [10].

((D(x) - D(x, )) = K(X’ X, ) - (5)

(6)

Original feature High dimensional Original feature
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Figure 4. Non-linear SVM

4 ExperimentalStudyfortheVerificationof ProposedMethods

The experiments in this study have 2 objectives: (1) to extract the efficient feature
vectors from wavelet transform of Lamb wave signals, and (2) to improve the damage
detection performance by using the SVMs trained by a set of the feature vectors. An
experimental setup and its overall configuration are shown in Figures 5 and 6. The
specimen (700x100x2mm) was made of 2 steel plates (400x100x2mm) jointed. Eight steel

bolts with 10mm in diameter with washers and nuts were used. Two PZTs were placed

- 337 -



at locations 100mm apart from the ends. The distance between two PZTs is 475mm.
The dimension of each PZT patch is 35x25x0.2mm. An impulse waveform was applied
to PZT 1 serving as a transmitter, and the propagating wave signal was measured at
PZT 2 serving as a sensor. The exciting frequency by the PZT patch was found as
234 kHz, so that Ao mode of the Lamb waves may be easily separated from the S
mode comljonent as in Figure2. It is noted that the most Lamb waves tend to propagate
along with the path (area between two red dotted lines) which depends on the width of
the PZT patch as in Figure 6. Therefore, it can be expected that damages out of the
Lamb wave path (damages out of path, DOP) do not cause significant changes in the
Lamb wave signal compared with the case of damages in the Lamb wave path
(damages in path, DIP). Damages were introduced by removing several bolts from the
joints. At first, the test was carried out on the intact state of the bolted joints, and then

experiments were performed on 8 different damage cases as described in Table 1.

Figure 5. Experimental Setup and PZT patch
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# 1,4,5 and 8: Damages out of Lamb wave path (DOP),
#2,3,6 and 7: Damages in Lamb wave path (DIP)

Figure 6. Test Specimen Configuration
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— Intact Case

Table 1. Damage Scenario ) _ —-- Demage Cass 2
Case 1 #1

Case 2 | #2 3
Case 3 #l & 4 g

Case 4 |. #2 & 3

Case 5 #1,23 & 4
Case 6 #12345 & 8 - | : i
Case 7 #1,2345 & 6 | Time (sec) | x10’
Case 8 | #123456 & 7

Figure 7. Lamb Wave Signals Obtained at PZT 2
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Figure 8. Wavelet Transform Results

Figure 7 shows the examples of Lamb wave signals obtained at PZT 2 from Intact
Case and Damage Case 2. It can be observed that the changes in arrival time and other
properties due to damages are not clear to be recognized. Therefore, the wavelet
transform technique was explored for detecting the chénges in the dispersive Lamb
waves due to damages. The wavelet transform results for the intact case and two
typical damage cases are shown in Figure 8. The TOF and WC were obtained based on
peak values, and their results are showed in Table 2. It was obvious that damages in
the Lamb wave path (as in Bolts 2, 3, 6 and 7) caused significant changes in TOF and
WC, while damages out of the Lamb wave path (as in Bolts 1, 4 5 and 8) did not.
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That is, for the former cases, TOF and WC gave good representation for identifying of _
localized damages. For the latter cases, however, their variations did not give consistent
trend correlating with damages. To improve the damage detection performance for the

latter cases, the proposed pattern recognition technique, SVMs was investigated.

Table 2. TOF and WC based on Peak Values from Wavelet Transform

Cases TOF (45) WC Number of DIP
Intact 640 0.004518 0 -
Case 1 640 0.004241 0

Case 2 644 0.004170 1

Case 3 642 0.004113 0
Case 4 652 0.003742 2

Case 5 650 0.003906 2

Case 6 648 0.003842 2

Case 7 700 0.003503 3

Case 8 702 0.003374 4

* Note: TOF corresponding to the group velocity of Lamb AQ mode at 23.4 kHz (Figure 2) is 424M5 for an

intact case of a steel plate of one piece with the same thickness (i.e.. not a bolted case)

4.1SVM-baseddamageclassification

Three damage classes were introduced considering damage locations, as described in
Table 3. Totally, 120 patterns to train SVMs were prepared by forty samples with 1
bolt removed from each class. They composed a 2D feature space as shown in Figure 9.
From Figure 9, it can be noted that the distinctions of each class’s regions are very
ambiguous. Therefore, probabilistic decision-making (the establishment of optimal

decision boundaries) between three classes were strongly required.

Table 3. Three Classes Considering Damage State

Classes Descriptions
1 Intact Case
2 Damages out of Lamb wave path (DOP)
3 Damages in Lamb wave path (DIP)

Figure 10 shows three kinds of classifying cases with different combinations of classes,
and the optimal decision boundaries for each case were constructed on high dimensional
feature space. To verify the capability of the SVM-based classifier, 20 test patterns
prepared by ten arbitrary samples with 1 loose (not removed) bolt from Classes 2
(DOP) and 3 (DIP) were used, and the results are showed in Figure 11. It can be
founded that the SVM gave very good detection performance for not only DIP (detection
rate: 100%) but also DOP (detection rate: 90%).

- 340 -



Damages Out|of Path (DOP)

.......... 4 Damager In Path (DIP)

1§ i ; =. A L e
37 638 839 B40 841 642 843 544 845 848 647
TOF (microsec)

Figure 9. Preliminary Test Results for Training Patterns
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Figure 10. Feature Space Divided by SVMs
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Figure 11. SVM-based Damage Estimation Results

5.Conclusion

In this study, PZT-induced Lamb waves-based methods have heen proposed for
structural health monitoring (SHM) of steel members of plate-type. The wavelet
transform and support vector machines (SVMs) are employed. It was demonstrated
through a series of experiments on a steel member that the proposed methods can be
viable tools for SHM based on the following: 1) PZT patches are cheap, light,
conformal, but require small voltage for actuating, 2) TOF (time of flight) and WC
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(wavelet coefficient) of the Lamb wave signal can be effectively used as damage
features, and 3) SVMs (support vector machines) can give very reasonable results for

damage detection.
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