

Software safety Analysis on the Model Specified by NuSCR and SMV Input Language at

Requirements Phase of Software Development Life Cycle using SMV

Kwang Yong Koh, Poong Hyun Seong
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,

 371-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
goeric1@kaist.ac.kr, phseong@kaist.ac.kr

1. Introduction

Safety-critical software process is composed of
development process, verification and validation
(V&V) process and safety analysis process. Safety
analysis process has been often treated as an additional
process and not found in a conventional software
process. But software safety analysis (SSA) is required
if software is applied to a safety system, and the SSA
shall be performed independently for the safety
software through software development life cycle
(SDLC) [1]. Of all the phases in software development,
requirements engineering is generally considered to
play the most critical role in determining the overall
software quality. NASA data demonstrate that nearly
75% of failures found in operational software were
caused by errors in the requirements. The verification
process in requirements phase checks the correctness of
software requirements specification, and the safety
analysis process analyzes the safety-related properties
in detail [2], [3].

In this paper, the method for safety analysis at
requirements phase of software development life cycle
using symbolic model verifier (SMV) [4] is proposed.
Hazard is discovered by hazard analysis and in other to
use SMV for the safety analysis, the safety-related
properties are expressed by computation tree logic
(CTL) [5].

2. Safety analysis at requirements phase using SMV

In this section, scope, process and method for this
research and basic theory or knowledge necessary for
the proposed method are described.

2.1 Safety Analysis

Safety process generally comprises of four stages and

each of them has its own main task [6]. Among them,
only hazard analysis is performed in this research. That
is because safety requirements and designation of
safety-critical systems stages are strongly related to
software development, and my research concern is not
the software development itself. And also safety
validation is substituted to safety verification because
the application model is a small part of the system, not
whole system. Table 1 illustrates safety processes and
their main tasks.

Table 1. Safety process and main task.

Safety Analysis
Process Main Task

Hazard and risk
analysis

Assessing the hazards and the risks of damage
associated with the system

Safety requirements
specification

Specifying a set of safety requirements which
apply to the system

Designation of
safety-critical

systems

Identifying the sub-systems whose incorrect
operation may compromise system safety

Safety validation Checking the overall system safety

2.2 Hazard Analysis

Hazard analysis is 1) to identify all possible hazards
potentially created by a product, process or application
and 2) structured into various classes of hazard analysis
and carried out throughout software process. And 3) a
risk analysis should be carried out and documented for
each identified hazard [6]. But in this work, it is limited
only at requirements phase and the risk analysis is not
performed because only qualitative analysis is carried
out and quantitative analysis is not included. Therefore,
although there are four stages in hazard analysis, this
research covers only hazard identification which is core
work of the hazard analysis. Table 2 shows hazard
analysis stages and their main tasks.

Table 2. Hazard analysis stages and main task.

Hazard
Analysis Stages Main Task

Hazard
identification Identifying potential hazards which may arise

Hazard
classification Assessing the risk associated with each hazard

Hazard
decomposition

Decomposing hazards to discover their potential
root causes

Safety
specification

Defining how each hazard must be taken into
account when the system is designed

2.3 Computation Tree Logic (CTL)

CTL is a kind of temporal logics used by model
checking tools and serves to formally state properties
concerned with the executions of a system [5]. There
are several categories of system properties expressed by
CTL, but only reachability and safety property which
are directly related to system safety are matters of
concern in this research.

Transactions of the Korean Nuclear Society Autumn Meeting
Busan, Korea, October 27-28, 2005

If a system can’t reach a hazard, we can say that the

system is safe from the hazard. Therefore, by
investigating non-reachability of a hazard, a system or
model of system can be checked with respect to its
safety against the hazard. In fact, reachability and safety
properties have exactly opposite meaning [5]. That is,
non-reachability and safety property have exactly same
meaning. Table 3 shows definitions and CTL
expression of reachability and safety property, and
relationship between them in CTL expression.

Table 3. Definition and CTL expression of reachability and
safety property and relationship between them.

 Reachability Property Safety Property

Definition Some particular situation
can be reached

Under certain conditions,
an event never occurs

CTL
expression EF P AG !P

Relationship !(EF P) ≡AG !P

2.4 Symbolic Model Verifier (SMV)

The SMV system is a tool for checking finite state

systems against specifications in the temporal logic
CTL [4]. It is usually used for formal verification,
although the way to use it for safety analysis is not
much different from that to use it for formal verification,
but it is used for safety analysis at requirements phase
in this work.

2.5 Safety Analysis using SMV

The process of the proposed method for safety
analysis is as follows.

1) By hazard analysis, identify potential hazards from
a model. 2) Track possible paths leading to hazard
using backward search technique which starts with a
final event or state and determines the preceding events
or states. 3) With CTL operators, translate the paths
into CTL expression. 4) Check non-reachability of
hazard using SMV. Here, non-reachability and safety
property have exactly same meaning in CTL expression
as explained above and SMV is used in the same way
as used for verification. 5) Finally, after checking non-
reachability of hazard using SMV, we can judge
whether a model is safe or unsafe from a particular
hazard with verification result. Figure 1 illustrates the
schematic process of safety analysis at requirements phase
using SMV

Figure 1. Schematic process of safety analysis at requirements
phase using SMV.

3. Conclusion

Because there is no such thing as absolute safety,
when mentioning safety, we can say that a system or
model of system is safe from only this or that hazard,
that is, a particular hazard [6]. In this work, the method
for analyzing whether a system or model is safe from a
particular hazard by checking non-reachability of
hazard using SMV is proposed. Although this research
doesn’t cover whole safety analysis and safety analysis
is simplified, the proposed method is convenient and
useful for analyzing system safety against a specific
hazard.

REFERENCES

[1] Kyung H. Cha. et al., “Techniques and Tool for Software
Qualification in KNICS,” Proceeding of the KNS 04 Autumn
Conference, Yongpyong, Korea, pp. 591-592 Oct. 28-29,
2004.
[2] R. Lutz, “Targeting Safety-Related Errors during Software
Requirements Analysis,” The Journal of Systems and
Software, vol.34, pp. 223-230, Sept. 1996.
[3]Taeho Kim, “Property-based Theorem Proving and
Template-based Fault Tree Analysis of NuSCR Requirements
Specification,” Doctorial Thesis, Department of Electrical
Engineering & Computer Science, Division of Computer
Science, KAIST, Dec. 2004.
[4] K. L. McMillan, “The SMV system for SMV version 2. 5.
4”, Nov. 6, 2000.
[5] B. Berard, M. Bidoit, et al., “System and Software
Verification: Model-Checking Techniques and Tools,”
Springer, 2001.
[6] Nancy G. Leveson, “SAFEWARE – System Safety and
Computers,” Addison-Wesley Publication Company, New
York, 1995.

Model

Tracking possible paths leading

to hazard

Translating the paths into

CTL expression

Checking non-reachability of

hazard

A model is safe from a

particular hazard or not

Verification result

Hazard analysis

Backward search

CTL operator

SMV (model checker)

Hazard identification

	분과별 논제 및 발표자	

분과별 논제 및 발표자	1
