

 A Study on Fault-Tolerant Software Architecture for COTS-Based Dependable System

Y. M. Kim, C. H. Jeong

Regulation Research Division, Korea Institute of Nuclear Safety
ymkim@kins.re.kr

1. Introduction

Recently, with the rapid development of digital
computers and information processing technologies,
nuclear instrument and control (I&C) systems which
needs safety-critical function have adopted digital
technologies. Also, use of commercial off-the-shelf
(COTS) software in safety-critical system has been
incremented with several reasons such as economical
efficiency and technical problems. But, it requires a
considerable integration effort and brings about
software quality and safety issues. COTS software is
usually provided as a black box that cannot be modified.

The biggest problem when we integrate such a
product into dependable systems is the reliability of
COTS software. There is no guarantee that the software
will perform its function correctly. It may have bugs or
unidentified components.

Recently, the method of software verification and
validation (V&V) is accepted as a way to assure the
dependability of new-developed safety-critical nuclear
I&C software. But, because of the limitation of COTS
software, software V&V can’t be applied as rigorously
as new-developed software.

There are considerable attentions into describing
software architecture with respect to there dependability
properties [5]. In this paper, we present fault-tolerant
software architecture using the C2 architectural style.
The remainder of the paper is organized as follows:
Section 2 discusses background work on the COTS
software in nuclear I&C, software fault tolerance and
C2 architectural style. Section 3 describes the
architecture for fault-tolerant COTS-based software.
Finally, we discuss the conclusion and future work.

2. Background

2.1 COTS Software in Nuclear I&C

Safety evaluation process of new-developed software

of nuclear I&C system have been performed through
the software V&V during software life cycle. But, there
may exist situations in which safety systems which will
be designed in part with COTS item. In that case, the
COTS dedication process shall be accomplished [3]. In
preliminary phase, the risks and hazards are evaluated
and the safety functions are identified. In secondary
phase, the COTS item is evaluated for acceptability
using detailed acceptance criteria.

In the case of COTS software, due to the intellectual
properties, we may not acquire documents in relation to
development, past examples and operating experience.

So, the verification and validation of the COTS
software is performed very restrictedly.

Specially, in case of real-time operating systems,
there are no clear criteria about evaluation of suitability,
operating experience, systems of problem report and
compensation tests. So, it only depends on engineering
judgments.

2.2 Software Fault Tolerance

Because we are not able to get error-free software,
software fault tolerance has been issued continuously
[1]. The root cause of software design errors is the
complexity of software.

For some applications such as nuclear I&C systems,
software safety is more emphasized than software
reliability. Fault tolerant technologies used in those
applications are aimed at preventing a disaster. Single
version software fault tolerance techniques are system
structuring and atomic action, fault detection, exception
handling and others. Multi-version techniques are
assumed that software which was built differently. So if
one of the redundant versions fails, at least one of the
others should provide an acceptable output. There are
recovery block, N-version programming, self-checking
programming, consensus recovery block and others.

Software fault-tolerance technologies using multi-
version COTS products are presented at [6]. In [6], they
exampled the NFS service which is developed using
different COTS operation systems and file systems.

2.3 Integration using C2 Style

C2 is a component- and message-based architectural

style for constructing flexible and extensible software
systems [2] [4]. In Figure 1, C2 has components linked
together by connectors (message routing devices). This
architecture emphasizes weak binding between
components, so it provides high integration ability.

 Components have two ports which are top and
bottom. A top port of a component can be connected
with bottom port of a connector and a bottom port of a
component can be connected to a top of a connector.
But, there are no limits on the number of components or
connectors that may be connected to a connector. In C2
style, direct communications between components are
not permitted. Components can communicate with each
other through connected connectors. Because all
messages are exchanged asynchronously and shared
address space is not assumed, integration problems can
be greatly simplified.

Transactions of the Korean Nuclear Society Autumn Meeting
Busan, Korea, October 27-28, 2005

Figure1. Basic Architecture of C2 Style

3. Fault-tolerant COTS Integration Architecture

3.1 Fault-detection Middleware

Our approach, we treat COTS software as an
untrustworthy software component. In [2], a COTS
component is wrapped inside a C2 Component. We also
use this wrapping technology. A fault-detection
middleware (FDM) is a wrapper. The FDM makes the
COTS component of a fault-tolerant C2 component, so
it can be integrated with other components
independently and flexibly and provides robustness by
fault detection and fault isolation capabilities.

The FDM monitors all of the information flow which
is in and out of the COTS component and protects the
system that the fault can’t be propagated to external
components.

3.2 Fault-tolerant COTS software integration
architecture

Figure2. Fault-tolerant COTS software integration

architecture

Figure 2 shows the architecture for a fault-tolerant
COTS component integration. It consists of a Fault
Detection Middleware C2 component (FDMC2) and an
Exception Handler C2 component (EHC2). A FDM is
wrapping a COTS component. It is the FDMC2.

In the FDM, there are a Translator, a Dialog
Controller and an Error Detector.

The Translator resolves inconsistency problems
between communication components such as data
encryptions, message names, the number of parameters
and parameter types and orders.

The Dialog Controller controls all incoming and out
coming messages. It communicates with connectors.
The Dialog Controller maps the request messages from

the other components to the proper messages for the
internal FDM objects and the COTS component. The
Error Detector detects errors of COTS component. All
in/out message of COTS passes the Error Detector. All
predefined COTS errors and exceptions are detected by
the Error Detector.

The EHC2 has the Exception Handler objects.
The Exception Handler manages the exceptions

which can be occurred by COTS. The exceptions which
can be happened are as follows [1];

 Interface exceptions are signaled by a component

when it detects an invalid service request.
 Local exceptions are signaled by a module when

its error detection mechanisms find an error in its
own internal operations.

 Failure exceptions are signaled by a module after it
has detected an error which its fault processing
mechanisms have been unable to handle
successfully.

4. Conclusion

From now, we presented fault-tolerant software

architecture for dependable system such as safety
nuclear I&C system. We used C2 style which provided
independency and extensibility and used middleware
for fault detection and isolation.

This approach has a weak point which can’t protect
unexpected errors. Our future work will be
concentrated on the resolution of it and we intend to
show the case study using our architecture.

REFERENCES

[1] Wilfredo Terres-Pomale. Software Fault Tolerance: A
Tutorial. Langley Research Center, Virginia, 2000

[2] Nenad Medvidovic, Peyman Oreizy, and Richard N.
Taylor. Reuse of Off-the-Shelf Components in C2-Style
Architectures. Proceedings of the 1997 Symposium on
Software Reusability, Boston, USA, May, 1997

[3] IEEE Std. 7-4.3.2, IEEE Standard for Criteria for Digital
Computers in Safety Systems of Nuclear Power
Generating Stations, 2003

[4] Taylor, R. N., Medvidovic, N,. Anderson, K. M.,
Whitehead, E. J., Jr., Robbins, J. E., Nies, K. A., Oreizy, P
and Dubrow, D. L., A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions
on Software Engineering, Vol.22, No.6, pp.390-406, 1996

[5] Saridakis,T., Issarny, V. Developing Dependability
Systems using Software Architecture. In Proc, 1st Working
IFIP Conf. on Software Architecture, pp. 83-104, February
1999.

 [6] Miguel Castro, Rodrigo Rodrigues, Barbara Liskov,
BASE: Using Abstraction to Improve Fault Tolerance.
ACM Transactions on Computer Systems, Vol.21, No.3,
August 2003, Pages 236-269

	분과별 논제 및 발표자

