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ABSTRACT

This paper deals with the flexural-torsional free vibrations of circular strip foundations with a variable breadth. The breadth of
strip foundation varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing free
vibrations of such foundations are derived, in which Winkler foundation is considered as the model of elastic soils. Effects of the
rotatory and torsional inertias and shear deformation are included in the governing equations. Differential equations are numerically
solved to calculate the natural frequencies. In the numerical examples, the free-free end constraint is considered. Effects of the
rotatory and torsional inertias and shear parameter on the natural frequencies are reported. Parametric studies between frequency

parameters and various system parameters are investigated.

1. Introduction

Since soil-structure interactions are one of the most
important  structural subjects in the foundation
engineering, much study concerning the soil-structure
interactions had been carried out. Structures related to
the soil-structure interactions should be modeled as
structures resting on or embedding in the elastic soils.
One of typical structures related to the soil-structure
interactions is the strip foundation which is basically
defined as the beam or strip rested on or supported by
elastic soil.

During the past few decades, dynamic studies on the
strip foundations have been frequently investigated by
many researchers. References and their citations include
the governing equations and the significant historical
literature on the free vibrations of beams resting on
elastic foundations i.e. the strip foundations."” However,
the most objective structures in such studies were the
uniform members even though the real structural systems
consist of many non-uniform members. Actually, non-
uniform members as well as uniform ones are often
erected in civil engineering works. Such typical
structures include the circular strip foundations which
support various loadings like the buildings, storages, and
mechanical machines.

From these viewpoints, this paper aims to theoretically
investigate dynamics of the circular strip foundations and
also to present practically engineering data for the design
of strip foundations. This paper deals with the free
vibration analysis of strips which have solid rectangular
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cross-sections with variable breadth and constant depth,
i.e. circular tapered strip foundations. In this study, the
soils/elastic foundations which support the strips are
modeled as a Winkler foundation and the variable
breadth of the strips is assumed to be varied in the linear
functional fashion. Differential equations governing the
free, out-of-plane vibrations of such circular strip
foundations are derived, in which effects of the rotatory
and torsional inertias and also shear deformation are
included although the warping of the cross-section is
excluded. Boundary conditions for the free end are also
derived.

Governing differential equations are numerically
solved for obtaining the natural frequencies. In the
numerical examples, the free-free end constraint is
considered. Effects of the rotatory and torsional inertias
on the natural frequencies are reported.

2. Circular strip with variable breadth

Figure 1 shows the horizontally curved circular strip
with the solid rectangular cross-section and its
dimensions. The radius and subtended angle are depicted
as p anda , respectively. The typical point along the
strip is defined by the polar coordinates(p,) in
which @ is measured from the radius of left end. The strip
with a =27 becomes a complete ring structure.
However, it is rational to apply the values of ¢ in the
region less than 27 because expansion joints are
periodically installed in the real strip foundations. As
shown in this figure, the depth A of the rectangular
cross-section is constant along the coordinate @, while
the breadth B varies with 8. Breadths of both far ends
(6=0and 6=q) are B, and the breadth at mid-
arc(@=a/2)is B, .

For defining the variable breadth B, the section
ratio m and depth ratio n are introduced as follows.
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Figure 1. Circular strip having rectangular
cross-section with variable breadth.

m=B./B,, n=H/IB,. (1,2)

a?’

It is natural that the variation of breadth should be
arbitrary. In this study, the breadth B is varied in a linear

functional fashion with the coordinate # and is
symmetrical about the mid-arc. The equation of B which
is a function of @ can now be expressed as follows.

B=B,(c +c,0),0<0<a, 3)
where the coefficients ¢, and ¢, for 0<@<a/2are

¢, =1, ¢,=Q/a)m-1), (4.1,4.2)

and the coefficients ¢, and ¢, for a/2<@<aare

¢ =2m-1, ¢, =2/a)1-m). (4.3,4.4)

Using Egs. (1)-(4) gives cross-sectional properties of
the area, second moment of inertia, polar moment of
inertia and torsional constant of the rectangular cross-
section, which will be used for deriving differential
equations later. The results are

A=BH = 4,(c, +¢,0), (5
I=BH’/12=1 (c, +c,0), (6)
1,=(BH® + B*H)/12

=1 (¢, +c,0) {1 +n7(c, +¢,0)%}, (7
J=CBH*=dI,{d,+d,(c, +c,0)}, (®)

where 4, =nB and I, = n’B /12 are the area and second
moment of inertia of the cross-section of the two extreme
ends, respectively. In equation (8), the numerical factor
C, is given as C,=(1/3)(1-0.63H/B), H/B<1 for

I3

the rectangular cross-section [20]. Using this numerical

factor, the coefficients d,, d, and d, in equation (8)

are determined subsequently as follows.
d,=4(1-0.63n), d, =1/(1-1.587/n), (9.1,9.2)
d, =1/(1-0.63n) 9.3)

It is noted that equations (9.1)-(9.3) are valid in the
ranges of n<1 and n/m<1 in order that H/B<1.

It is recalled that any other functions of the variable
breadths instead of linear one chosen in this study should
be selected and then, the corresponding cross-sectional
properties can be similarly obtained.

3. Mathematical model

Shown in Fig. 2 is the circular strip foundation, i.e.
circular strip on an elastic soil foundation, whose cross-
sectional properties are already defined. Each end is
either clamped or hinged or free. The dashed line is the
un-deformed shape in the static state, while the solid line
is one of typical deformed shapes caused by free
vibrations, which is called as mode shape. Deformation
variables of the vertical deflection, rotation due to pure
bending, shear distortion and twist angle are denoted by
v,w,fand ¢, respectively. Depicted by R, and R, due
to the foundation whose modulus is K are the vertical
and torsional reactions.

In this paper, the foundations are assumed to foilow
the hypothesis proposed by Winkler. Figure 3 shows the
restoring reactions of R, and R, due to v and ¢ ,
respectively, at any coordinate . In this figure, B,
already defined in Fig. 1, is the breadth of the cross-
section. The vertical reaction R, is caused by the vertical
deflection v. The discrepancy of v between out-and in-
side extremes of the strip element is obviously caused
by ¢ under the assumption that there is no bend along
the radial direction.® As the result of this discrepancy,
the Winkler foundation has the torsional reaction R, . It
is evident that the pressure of contact surface between
strip and Winkler foundation is varied with r in a linear

fashion. Here, ris the coordinate in the radial direction
with the origin at the centroid of the rectangular cross-

section depicted as o' in Fig. 3.
The relation between the pressure and deflection of
the foundation surface at r can be expressed in the form

p(r,0) = Kz(r,0), —B/2<r<+B/2, (10)

where p(r,8)and z(r,8) are the pressure and deflection

of the contact surface, respectively, and K is the
foundation modulus. From Fig. 3, one can find that

z«(r,0)=v-¢r,

—B/2<r<+B/2. (11)

Free end

Figure 2. Circular strip foundation and its variables
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R,
Figure 3. Reactions of foundation

Hence, both reactions R, and R, at coordinate 6 can
now be calculated by using Eqgs. (10) and (11) as follows.
R, =KBv, R, =(KB*/12)¢. (12,13)

The three equations for “dynamic equilibrium” of the
element are

p'Q'-F,-R, =0, (14)
p'M'-Q+p7'T+C, =0, (15)
pM-p T +C,+ R, =0 (16)

To facilitate the numerical studies and to obtain the
most general results for this class of problem, the
following non-dimensional system parameters are

defined.
n=vip, b=B,/p, (17,18)
k=KB,p* (n*El)), g=GI/E (19,20)

where 77 is the normalized deflection, b is the contact
ratio between strip and foundation, k is the foundation
parameter and g is the shear parameter. And the
frequency parameter is defined by

C, =w,p* ¥4, (EL,) @)

which is expressed in terms of the i th frequency @ = @,,
i=12345-

The differential equations governing free, out-of-plane
vibrations of the strip foundation are derived by using all
the equations mentioned above. First, the cross-sectional
properties are substituted into the stress resultants, inertia
loadings and foundation reactions, respectively. Second,
the first derivatives of Q', M’ and T’ are obtained.

Third, the stress resultants with the corresponding
derivatives, inertia loadings and foundation reactions are
then substituted into the three equations of dynamic
equilibrium. Finally, non-dimensional system parameters
are used. The results are

where i is the mode number.

N =an +(b +b,CHn+y’ -ay, (22)
w'=by' +ay +(a, —b, +b,Cy +(a, +1)¢' —a,¢,
(23)

" =(a, W' +aw+a,p' +(-a, +a +a,CHe,(24)

where the coefficients in Eqs. (22)-(24) are as follows.

a, =-c,/(c; +c,0), (25.1)
a,=dg{d, (¢, +c,0)+d;}, (25.2)
a, =-1/[d,g{d, l(c, +c,0) +d,}], (25.3)
a, =-c,d,/{d, +d,(c, +c,0)}, (25.4)

a;, =mbk(c, +¢,0) {d, +d (¢, +¢c,0)}/(12d,g) , (25.5)
ag =-b*{n* +(c, +¢,0)*}

x[12d,g{d, K¢, + ¢,0) + d,}] (25.6)
and
b =7'nb*k/(12/2), (25.7)
b, =-n*b* I(12fz), (25.8)
b, = -12 /g /(n*b?), (25.9)

b, =-n"b*/12 (31.10)

Each end of the strip foundation is free. The boundary
conditions for the free end (=0 orf=a)are given
by

rl'—W=O! ¢_l//'=03 W+¢’=O, (26'28)
4. Numerical examples and discussion

The numerical methods described by Lee et. al* are
used to solve the differential equations. First, the Runge-
Kutta method is used to integrate the differential Eqgs.
(22)-(24) subjected to the boundary conditions of Egs.
(26)-(28). Second, the determinant search method
combined with the Regula-Falsi method is used to
determine the eigenvalue C, of the differential equations.

Table 1 shows effects of rotatory and torsional inertias
on C, (i=12345) for the strip parameters: a=
7l/6, n/4d andx/3,m=15, n=0.3, b=0.2, k=30
and g=0.42. When the rotatory and torsional inertias

Table 1. Effects of rotatory (E,) and torsional (£, )
inertias on frequency parameter C,*

Frequency parameter, C,

a E, E i
BT =2 i=3  i=4 i=5
0 0 54.06 98.94 - 221.9
T 1 0 . 5372 96.56 - 2122
6 0 1 42.05 53.98 101.3 118.6 201.6
1 1 42.03 53.59 9901 118.5 201.5
0 0 - 5406 6564 N 1123
o1 0 - 53.93 64.90 - 109.8
4 0 1 42.43 53.96 66.52 83.18 113.6
1 1 42.42 53.79 65.81 83.07 111.2
0 0 - 54.06 58.02 - 77.61
T o1 0 - 54.00 57.64 - 76.54
3 0 1 42.69 53.92 58.26 66.47 79.38
1 1 42.68 53.83 57.90 66.30 78.50

*m=15n=03,b=02,k=30andg =042.
® Bold lettered figure: torsional mode
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are excluded, the coefficients b, and g, of the differential

equations which are related to the rotatory and torsional
inertias, respectively, are merely deleted. Both rotatory
and torsional inertias always depress C, values. It is

apparent that if the torsional inertia is excluded (£, = 0),
the C, values of torsional modes, bold lettered figures in

this table, can not be calculated explicitly. Therefore it is
very important to include the torsional inertia in the free,
out-of-plane  vibration analysis of circular strip
foundations. Additionally, it is fact that the effects of
rotatory inertia on torsional frequencies (bold lettered
figures) are negligible comparing those on flexural
frequencies. ’

Figure 4 shows relationships between C,and & for the

beam with a=#n/3, m=15, n=03,b=02andg=
0.42. TheC,values increase as the value of k is

increased. Each mode of natural frequencies is either
symmetric or antisymmetric since geometry of the strip
foundation is symmetric. In this figure, the symmetric
and antisymmetric modes are depicted as ‘S’ and ‘A’,
respectively. Also, each mode is either flexural or
torsional as shown in Table 1. The flexural mode is
depicted as ‘F’ and torsional mode as “T’. In this figure,
two mode shapes exist at a single frequency parameter
where two frequency curves meet. The third and fourth
modes have the same frequency parameters
C,=C, =754 for k=549 (marked m). Therefore, the
third and fourth modes are changed from symmetric and
flexural to antisymmetric and torsional at &k =54.9 . Itis
natural that the value of C| (i=1) for k =0, namely
without foundation, since the first mode is rigid one.
Figure 5 shows C, versus n curves for the beam
with a=7x2/3, m=1.5, b=0.2,
The C, values decrease as the value of n is increased.

However, the first frequencies rather increase than
decrease for the higher value of » more than
aboutn =0.7.

120

o=7/3, m=1.5, n=0.3, b=0.2, g=0.42

4 i=1,2,3,4,5: from bottom to top

S: Symmetric mode; A: Antisymmetric mode
F: Flexural mode; T: Torsional mode

100 —

Frequency parameter, C;

0 T T T T T T T i T
0 20 40 60 80 100
Foundation parameter, k

Figure 5. C, versus k curves

k=30 andg=042.

100

a=m/3, n=0.3, b=0.2, k=30, g=0.42
-4i=1,2,3,4,5: from bottom to top

-

Frequency parameter, C,
1,

08 12
Section ratio, m

Figure 6. C, versus m curves

5. Concluding remarks

Differential equations governing free vibrations of
circular strip foundations with the variable breadth are
derived, in which the elastic soils are modeled as
Winkler foundation. The effects of the rotatory and
torsional inertias and shear deformation are included.
Differential equations are solved numerically for
calculating the frequency parameters. In the numerical
examples, the five lowest frequency parameters were
calculated. The rotatory and torsional inertias always
depress the frequency parameters. If the torsional inertia
is excluded, frequency parameters of the torsional modes
can not be obtained explicitly. It is expected that the
results of this study can be used in designing circular
strip foundations especially when subjected to dynamic
loads.
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