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Dynamics of an Axially Moving Thermoelastic Beam-plate
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ABSTRACT

For accurate prediction of the thermal shock-induced vibrations, this paper develops a spectral element model for axially
moving thermoelastic beam-plates. The spectral element model is formulated from the frequency-dependent dynamic shape
functions which satisfy the governing equations in the frequency-domain. Some numerical studies are conducted to evaluate the
present spectral element model and also to investigate the vibration characteristics of an example axially moving beam-plate

subjected to thermal loadings.

1. INTRODUCTION

Dynamic characteristics of various types of structural
elements subjected to thermal loading (heat) become
increasingly important during last half century due to their
many applications in diverse engineering fields. When a
sudden thermal loading is applied to a structure, a very
rapid thermal process may occur to induce very rapid
movements in the structure, thus causing the structure to
vibrate. The thermally induced vibrations may be
encountered, for example, in the high-speed modem

aircrafts subjected to aerodynamic heating, the nuclear

reactors in extremely high-temperature and temperature
gradient environment, the high-speed propulsion units, and
the galvanized steel sheets passing through a hot zinc tank.
The thermally induced vibration of beams subjected to
suddenly applied heat flux distributed along its span was
studied by Boley [1]. Since then, numerous studies have
been conducted for various thermoelastic structures [2-5].
The existing previous studies on the thermally induced
vibration have been focused mostly on the stationary
thermoelastic structures. To the authors’ best knowledge,
the dynamics of axially moving thermoelastic structures
has not been investigated yet. Furthermore, the spectral
element method (SEM) [6] has not been applied to solve
such moving thermoelastic structure problems. Thus, the
purpose of this paper is to develop a spectral element
model for axially moving thermoelastic beam-plates.
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2. DERIVATION OF GOVERNING EQUATIONS

2.1 Equations of motion

Consider a thin beam-plate is moving in the axial x
(axial) direction at a moving speed of ¢. The beam-plate
has the thickness # and width 5. The material properties
of the beam-plate are given by the Young’s modulus £
and Poisson’s ratiov. Assume that the beam-plate has a
small amplitude vibration: w(x, ) is the displacement of the
mid-plane of the beam-plate in the z direction and x4 in
the x direction. The equations of motion and the relevant
boundary conditions of the beam-plate can be derived
from the Hamilton’s principle:

[* (K - 6P +5W)dt =0 (1)
i
The stain energy P and kinetic energy K are given by

p=1 jo"(Dw"2 +EAW? + My W = Ny u')dx
)]
_[ { (c+a} +a(wrew P+ 102 } dx
where L is the span between two simple supports, 4 = bh
D =EI/(1-V%), I = bK*/12, and

H=IEA1

M, (e 1) = EabI/AT(x,zt)zdz

) Eab'[/

3)

AT(x,2,t)dz

where My and Ny are the thermal moment and the thermal
(axial) force, respectively, and 47{x,z,1) is the difference
between the absolute temperature 7{x,z,£) and the reference
absolute temperature Tp. The virtual work is given by

(o, 1)u(x,r)+ p.(x l)é‘w(x t)}dx
+N, (t)&u, (1) + N, () S, (0) + M (0) 59, (1)
+ M, (1) 58, )+ ¥ (1), 6w, (1) + ¥, () B (1)

oW =
Jute 4
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where p(x,7) and p,(x,?) are the distributed loads acting on the
beam-plate in the x and z directions, respectively. M,, V; and
N; (i=1, 2) represent the boundary moments, transverse shear
forces and axial forces applied at x =0 and x = L, respectively.
The transverse displacements, the axial displacements and the
slopes ¢= Ow/Ox at the boundaries are defined by

wi () =w0.1) , wy(t) = w(L,1)
60 =w(0,1), $:(0)=w(L1) (5)
u () =u(0,1) . uy(O)=ulL,1)
Substituting Eqs. (2) and (4) into Eq. (1) and integrating
by parts yields the equations of motion as
EAu" - pdii=—p (x,0)+ N../2 )
DWW+ pAc W'+ 2pdcW — pl W'+ pdw=p, (x,0)~ M1 /2
and the boundary conditions as
N@©,5)==N,(t) or ul0,1)=u,(t)
N(L,t)= N(t) or u(L,t)=u,(2)
M(0,5)=-M,(t) or ¢(0,1)=¢()
M(L,ty=M,(t) or §(L,1)=¢)
V(0,0y=-V,(f) or w(0,t)=w,()
V(L,t)y=V,(t) or w(L,t)=w,(r)

™

2.2 Heat conduction equation

The temperature field T{x,z,?) or AT(x,z,?) is governed
by the heat conduction equation, which can be derived
from the law of energy conservation written as

—k(T"+T°°)+pc,, cT'+(T0 ’E, +pcP)T

+(T, a EN=-v){i' =2/ + ww) =0 ®)

where « is the coefficient of thermal expansion, ¢, is the
specific heat at the constant strain, k% is the thermal

conductivity of the medium, and £,= E(1+v)/(1-2v)(1-v).

The symbol circle (°) denotes the derivative with
respective to the coordinate. Assume that the beam-plate
is subject to the thermal loads applied only on the top or
bottom surface of the beam-plate. Due to the geometry of
the beam-plate, one may assume the temperature as the
function of only z and ¢ to simplify Eq. (8) as

kT ~(T,aE, + pc,)T =0 ©)
Once the proper thermal boundary conditions are specified
for a given problem, one can readily solve Eq. (8) for T{z,

f) and then apply the solutions into Eq. (6) to estimate the
thermal-induced vibration of a beam-plate.

3. SPECTRAL ELEMENT FORMULATION

Based on the DFT theory, assume the solutions of Eq.
(6) in the spectral forms [7] as

N-1

N-1
ulx,t)=Y U, (x) e, w{x,t) =Y W,(x) " (10)
n=0 n=0

where Uy(x) and W,(x) (n =0, 1,..., N-1) represent the
spectral components of u(x,?) and w(x, f), respectively.
Similarly, represent the external loads and thermal loads
into the spectral forms. Substituting Eq. (10) and all
other spectral representations into Eq. (6) gives

EAU" + pdw,*U, =F,, ()
D"+ (pac + plo, W, + 2iphco, W, - phar W, = F,
where
Fo(x)=-P,+N}, 12, F,(x)=P,-M;, /2 (12)

xn zn

The spectral element formulation begins with the governing
equations without the external forces [6, 7]. Thus, the
general solutions of the homogeneous differential equations

" reduced from Eq. (11) can be assumed as follows:

Ux)=4,e~*, Ww,(x)=B8, ™" (13)

where &, and A, denote the wavenumbers for the axial and
transverse vibration modes, respectively. Substituting Eq.
(13) into the homogeneous differential equations reduced
from Eq. (11) may yield two dispersion relations, from
which two and four wavenumbers can be obtained for the
axial and transverse vibration modes, respectively. By
using these wavenumbers, the general solutions Eq. (13)
can expressed in the forms as

U,()=[Eu(si0,)){C,} . W, (x)=[Ep(xi0,){C,} (14)

* where {C,} is the (6 by 1) constant vector to be

determined by boundary conditions.
Now, consider a finite beam-plate element of length L.
The spectral nodal DOFs are defined by

Un=Un0), W, =<W,(0), @, =W.0) o
U= Unz(L) s W =W, (L) s Doy =W, (L) :
Applying Eq. (13) to Eq. (14) may yicld a relationship
between the spectral nodal DOFs vector {d,} and the
constant vector {C,} as follows:
{4,}=[x,(,)}c.} (16)
where
{dn}: {Um Wo @, U, W, &, }T (17)
One can eliminate the constant vector {C,} from Eq. (14)
by using Eq. (16) to obtain
U, () =E,][x, T {4,} =[N (x:0,)1{4,}
W"(X)= [EWn][Xn ]“l {dn}E [NW"(X;C()")]{d"}
where [Ny,] and [Ny,] are the dynamic (frequency-
dependent) shape function matrices.

In the following, the variational approach [8] is used
to formulate the spectral element matrix by using the

(18)
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displacement fields given by Eq. (18) as well as the
temperature field which will be given in the next section.
The weak form statements of the original governing
equations, Eq. (11), are given by

[[(EaU: + pt0,*U, - F, ) 8U, dx =0
[{ow+(pac? + plo,? )" + 2ippca, W, (19)
—-pAw*W, ~F, }5W dx=0

By substituting the loading terms of Eq. (12) into Eq.
(18) and integrating by parts, one may obtain

[s.(@)d,}={1} (20)

where [S,(@)] is the frequency-dependent spectral
element matrix defined by

[8,()]= | {EALN, TN, ]- el N, PTG Jox

[ DI (Nt + ) 5, T =
viptew ([N} (Wi J- (M (W) ptoi W, W, e
and {f,} is the spectral nodal forces defined by
jo xn X) NUn]de+j P x)[NWn]T dx
22

[ OV () O O
+;[ m ON 3, ()= M, N, O

All spectral elements can be assembled in a completely
analogous way to that used in the conventional FEM.

The temperature filed is governed by Eq. (9) and it
can be solved in the spectral form as

7(er)= 5T, (2)e™ with T,(z)=Be™ + B e (23)

=0

and

Yy R T TS

The constants B,; and B,, are determined by the thermal
boundary conditions specified on the upper and lower
surfaces of beam-plate. Once the spectral components of
temperature T, are computed from (23), the corresponding
spectral components of the thermal moment M7 and the
thermal force Nrin Eq. (22) can be readily computed from
Egs. (3) and (12).

< L >
L, > L, — L,
To T0+AT(t) “To

< g

T 2

Fig. 1 An example problem: a beam-plate which moves over
two simple supports

4. NUMERICAL RESULTS AND DISCUSSION

As an illustrative example problem, a beam-plate which
is axially moving over the two simple supports of distance
L =72 m s considered. The beam-plate has the thickness /=
Smm, width b = 0.5 m, Young's modulus £ = 73GPa,
Poisson’s ratio v = 0.33, mass density p= 2770 kg/n’,
thermal expansion coefficient @ =23.0x10°/K, thermal
conductivity k=177 W/mK, and the specific heat ¢, =875
J/kgK. As shown in Fig. 1, the temperature change is
applied only on the middle part of the upper surface while
the other parts are kept having the room temperature 7.

Table 1. Natural frequencies(Hz) of the beam-plate
obtained by the present SEM, FEM and the exact theory
(Blevins [9])

Fluid
Velocity [ Method | ¥ | & | @™ | 0 | 0 | @ | of
(m/s)
Exact[9]| - 3.083 [12.329 | 27.743 | 49.321 | 77.066 | 679.78
SEM 1 3.083 | 12.329 ] 27.742 { 49.317 { 77.057 | 679.78
Y 10 | 3.083 | 12.331 [ 27.758 | 49.403 | 77.371 | 680.48
FEM 50 | 3.083 | 12.329 ] 27.743 | 49.322 | 77.067 | 679.81
100 | 3.083 }12.329 | 27.743 | 49.322 | 77.067 | 679.79
SEM 1 2.248 | 11.790 | 27.277 [ 48.889 | 76.649 | 679.78
8 10 | 2.248 | 11.792 | 27.296 | 48.983 | 76.982 | 680.48
FEM 50 | 2.248 111.790 | 27.279 | 48.893 | 76.660 | 679.81
100 | 2.248 | 11.790 | 27.279 | 48.893 | 76.659 | 679.79
SEM 1 0.0 11.012 | 26.631 | 48.297 | 76.087 | 679.78
12.33 10 0.0 11.015 { 26.654 | 48.402 | 76.446 | 680.48
FEM 50 0.0 11.012 § 26.633 | 48.301 | 76.098 | 679.81
100 0.0 11.012 } 26.633 | 48.301 { 76.097 { 679.79

Note: N = number of finite elements used in the analysis
(w) = transverse displacement (bending) mode
(u) = axial displacement mode

First, to verify the exactness of the present spectral
element model, the natural frequencies of the beam-plate
obtained by the present spectral element model (SEM), the
finite element model (FEM), and the exact theory (only for
stationary beam, i.e., ¢ = 0 m/s) are compared in Table 1 for
various moving speed of the beam-plate. The number of
finite elements used in FEM is increased from ten to one
hundred, while only one finite element used for the SEM
results. Table 1 shows that the SEM results are identical to
the exact results when ¢ = 0 m/s, and the FEM results
certainly converge to the SEM results when ¢ #0 m/s as the
number of finite elements used in FEM is increased. This
may prove that the present spectral element model is exact.
One more thing we can observe from Table 1 is that in
general the magnitudes of natural frequencies (real parts of
eigenfrequencies) decrease as the moving speed of beam-
plate increased. The first natural frequency becomes zero
first time at about ¢ = 12.33 m/s, at which the divergence
instability occurs. 7, investigate the thermal-induced
vibrations of the beam-plate, the temperature on the middle
part of the upper surface of beam-plate is suddenly elevated

- 717 -



067

AT/,

oad. .-

0.2

0.02
0.03 .

Time (sec) 0.
0.05 0.5 z/h

Fig. 2 Time history of the temperature distribution through
the thickness of beam-plate.
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Fig. 3 The transverse displacements vs. the size of L, on which
thermal loading is anblied when ¢ = 4 m/s.
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Fig. 4 Time responses of the transverse displacement vs.the
duration of thermal loading A when ¢ = 4 m/s.

so that AT = 20K and the elevated temperature is
sustained for 0.01 seconds from ¢ = 0, where L, = L; =
0.8 m and L, = 0.4 m. As the result, the corresponding
time history of the temperature distribution through the
beam-plate thickness is shown in Fig. 2. Figure 3 shows
the time responses of the transverse displacements
depending on the length of middle part (L,) subjected to
the sudden temperature change, when the moving speed

of beam-plate is ¢ = 4 m/s. The time responses in both
axial and transverse displacements tend to increase as the
length of middle part becomes larger. Figure 4 also
shows the time responses of the transverse displacement
depending on the duration of thermal loading At when
the moving speed of beam-plate is ¢ = 4 m/s. The
transverse displacement tends to increase as the duration
of thermal loading becomes larger.

5. CONCLUSIONS

In this paper, a spectral element model is developed for
the axially moving beam-plate which is subjected to
external thermal loadings. The spectral element model is
formulated from the frequency-dependent dynamic shape
functions which are the exact frequency-domain solutions
of the governing equations. To evaluate the present
spectral element model, the conventional finite element
model is also formulated in this study. Numerical studies
have been conducted to verify the high accuracy of the
present spectral element model and also to investigate the
thermal-induced vibrations of an axially moving beam-
plate subjected to a sudden temperature change on the
upper surface of the beam-plate.
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