The Collaborative Process: How Do We Deploy User

Requirements to the Design of Component Models?

In, Joon-Hwan® ,

Lim, Joa-Sang

ComponentBasis Co., Ltd., Sangmyung University

E-mail : junanil2@componentbasis.com, jslim@smu.ac.kr

Abstract

Since their first inception a few decades ago, software components have received much attention mainly due to

their alleged benefits of quality and productivity improvement. Despite this, it is yet to be agreed upon what and

how components should be designed. This paper aimed to bridge the gap by proposing a collaborative process

where the voice of the customer is captured and documented by employing the event and entity models. These

requirement elements (WHAT) are cross-tabulated in three relation matrices in accordance with the weights

provided by the business users. The requirements are fed into the algorithm invented by the authors to optimize

the component grouping (HOW). This collaborative process has been successfully validated at an enterprise wide

software development project. The process was effective to help the users more actively involved in the design of

the system and made the whole process faster and more adaptive to the changes.

1. Introduction

Software crisis, first coined in 1968 at the NATO
conference, has long prompted any silver bullet to
remedy the deep-rooted dilemma of schedule and cost
overruns and low quality products. Although there have
been remarkable advancements in project management
and related technologies over the last decades, they do
not appear to pay off sufficiently up to the expectation
[1]. As some leading vendors have marketed their
products (e.g., Sun J2EE, Microsoft .NET) and object-
oriented technologies become more robust and stabilized,
software component has recently attracted much
attention and been favored by the practitioners mainly
improvement in quality and

due to its claimed

productivity [1][2][3]. Despite such penetration of

component technology into the market, however, there
seems little consensus as to what software components
are and how effectively components should be designed
and developed in order to fully take advantage of its
alleged benefits. We wish to address these missing gaps
by raising two questions. Firstly, how do we get the users
involved more actively in the process of collecting their
requirements? Software project often fails to deliver
what has promised to deliver and most of the failures are
attributable to user involvement [2][3]. Some of the
problems may be due to the fact that the user
requirements are often vague and spoken in business
jargons, which could not easily get across to the system
designer. More importantly, the process to deploy the

user requirements to the system is hardly open to the

356

users and left to the hands of system designers as it is
- claimed to be technical [4]. This will certainly bring in
more frequent changes to the system that would worsen
the whole software development process. Thus this leads
us to the second question as to how we iteratively reflect
the changes of user requirement in the design of
component models. Given this, this paper aims to
propose a semi-automatic collaborative process to
capture business requirements with the users more
actively involved and deploy them seamlessly to
software components. This paper shall start by reviewing
prior literature regarding user requirements and
component identification. Then we shall present the

- collaborative process with an algorithmic framework to

be validated in this paper.

2. Related Literature

User requirements are often refined through an iterative
process and documented as a set of scenarios for the
component based development (CBD) (e.g., use cases)
[5]. Whereas this process is relatively well understood in
the body of ‘requirement engineering’ literature [5], it is
still vague the way the user requirements are led to
system design. Some of the suggested methods to
discover businéss ‘objects include either linguistic or
categorical approach [7]. The former approach is to find
candidate objects/classes from the nouns. The latter is to
locate such semantic categories as place, roles and
containers among others. Despite such practical guidance,
Kaindl [4] argued that it is still difficult to transit the
classes discovered in the requirement analysis to the ones
to be used in the design phase. Furthermore there exist
only a few studies on grouping these fine-grained classes
into coarse components. IEEE suggests one of the crucial

activities in software design is to decompose the whole

system as long cherished by the divide and conquer
principle. In this regard, QFD (Quality Function
Deployment) may be useful to develop a system to meet
business requirements and translate them to design
requirements [8]. The QFD was invented in the 1960s
and since then has been used in various industries such
as production, manufacturing and software development
[6]. The QFD have been reported to be valuable us in
managing conflicting views of stakeholders in software
development [7][8][9]. Kim et al. [10] proposed the
formal approach to decompose the HOQ (House of
Quality) of QFD into smaller problems combined with
the multi-attribute value theory and formulated the
quadratic model that minimizes the overall
dissatisfaction level due to the out-of-group entries as a
result of the grouping. This has been reflected in the
research in that the legacy programs. are par_séd and
analyzed to extract some independent modules of source
code. For example, Etzkorn et al. [11] calculated some
meaningful metrics from the legacy object—_oriented
source code to automatically identify components.
Whereas this line of research relied on reverse
engineering from the source code, some studies shifted
the focus onto the requirement artifacts from which to
identify software components in a forward way. Jain et al.
[12] proposed a business component identification
method where the business objebts were related to each
other and their static and dynamic relationships were fed
into the clustering algorithm and semi automatic
heuristics. Lee et al. [13] also used the analysis model
and the functional use cases and classes were cross-
tabulated with each other to extract a set of reusable
components. Whereas Lee et al. [13] emphasized the
coupling and cohesion of use cases and classes
considered independently, Jang et al. [14] challenged to

relate use cases with business objects using the affinity

analysis technique. They sorted use cases in a logical

-357 -

affinity sequence and related them with a set of classes in
a mati'ix. Affinity analyses were performed for any
intersections between use cases and classes and the type
of .transaction_s (e.g., Create, Read, Update & Delete) was
analyzed. Then most associated group of classes was to
be identified as a component. Finally, Albani et al. [15]
proposed a procedural algorithm based on the functional
decomposition diagram and the data model, which
associated relevant tasks and information objects in
consideration of their relationships. In contrast to the

earlier studies where the legacy source code is reverse

engineered, the studies using the analysis model certainly .

provide a vehic'le to identify components at the earlier
phase of software development life cycle. However,
these studies do not appear to offer sufficient guidelines
for the practitioners to cope with detailed requirements
of the larger software development projects. Indeed, it is
often experienced that thousands of functional
requirements and hundreds of entities are to be explored
for component modeling. This study offers the
collaborative process where the users are allowed to set
up the policy (preferences) with regards to system design
and associate the functional requirements with design

requirements to identify software components.

3. The Collaborative Process

The collaborative process consists of three phases —
requirement analysis, overall design and detailed design
as seen in Fig. 1. Of these phases, the second overall
design highlights the nature of the collaborative process
where the user and the system views are met and
coordinated as shaded in Fig. 1. Thus the role of the user
is not confined to the earlier phase of requirement, but
extended to the later stages of system design. The first
activity as suggested in the QFD literature [16] should

identify the stakeholders of the systems and then capture
the voice of the customer. In the object-oriented
development, use case modeling is the most favored
approach to document both functional and non-
functional user requirements. Then logical entities are
sought and decomposed in relation to the functional
requirements of the use cases. This is followed by the
overall design of relating both the use cases and the
entities in accordance to the policy as to the types and
strengths of the interrelationships and their optimality.
An algorithm was invented here with a metric to evaluate
the satisfaction level as the ratio of the associations
included in the identified components. As the focus of
the collaborative process, this is detailed in the hfollowing
sections. The components and interfaces discovered in
the overall design are realized in the subsequent phase of

detailed design.

System view

User view

Use Case Use case Policy . Composent
modeling [] relaionship | wtup Grouping - I sertifcation
' ¥
: 3
Candidaie :
1] concept [~ Com" s Relationships Diility W
Jentification decompogtion} : building refacioring identification
: [3
4
- Patterns
Validation [refactoring
t

Fig. 1. The collaborative process with the user view extended
to the overall design phase (shaded), which repeats until the

requirements are fully deployed to the component model

3.1 Building relationships of use cases and classes

As modeled in the earlier phase, the two model elements
of use cases and business objects play a critical role to
construct the relation matrix. The details as to how to
relate them are described in the policy set-up activity. We
propose three possible cross-tabulations as follows:

1. The use case x use case relationship matrix: This

-358 -

relates use cases with each other to find commonly used
functional components and use case packages depending
on the extent of correlation (CU) as in Equation (1)
where the subscript represents the use case i and j
respectively. Considered the most correlated are
‘include,’ ‘precondition’ and ‘generalize,’ being certainly
stronger relations than the ‘extend’. The least correlated
use cases refer to those hardly used together. These
strongly coupled use cases serve a locus of control to

identify components.

CU, = {the correlation between UC, and UC ; } @)

2. The use case x entity relationship matrix: The second
matrix 1s established with four different transactional
types of relations (RE) such as C (create), R (read), U
(update) and D (delete) (see Equation 2). Non-functional
requirements may also be considered into the matrix (e.g.,
transaction frequency). The weight is computed as
Equation (3) for all relevant use cases and entities where

is the weight of transaction type x.

RE,={C,R,U,D} (2)

w(RE,)=w (@C)+w@R)+w@U)+Ww (D) 3)

3. The entity x entity relationship matrix: The last matrix
is concerned with the relationships among entities as
represented in Equation (4). The different weights may
be given according to such possible relations among
classes as inheritan'ce, composition, aggregation,

association and dependency.

cC , = {the correlation between C, and C, } 4)

It should be noted that the weights of three matrices be

normalized. With these cross-tabulations, we may then
proceed to the component graphs and the computation of
edge weights with MST (Minimum Spanning Tree),
which is iterated to minimize the dissatisfaction level of
identified components as shall be discussed in the
following stage.

3.2 Grouping of use cases and classes into
components

With the relationship matrices constructed in the earlier
activity, we proceed to group the use cases and the
entities into components. Fig. 2 shows the algorifhm,
which starts with the use case graph to find a seed

solution and then moves to ‘grouping’ to minimize the

loss of relationship between use cases and entities.

Construct use case graph
¥

Find seed solution

)
Assign Assign Evaluate
usc casesto [classes to - satisfaction
class groups use CAse groups leve)

Yes Better solution?
No

Decompose components

Yes Less than maximum
number of components?

No

Fig. 2. The algorithm that iteratively assigns the use cases and

the classes into component groups to find the best solution that

minimizes penalty to lose the relationships

Firstly, the relationship matrices are visualized with
graph notations. As seen in Fig. 3, the use case is denoted
as the ‘uc’ node whereas the class, as the ‘c’ node. The
edge represents the association between the nodes. To
make the algorithm computationally efficient, the use
case-class graph (the left-most of Fig. 3) is transformed

to the use case graph with all involved classes removed

-359 -

(the middle of Fig. 3). The information loss caused
from the transformation is to be recomputed in the edge
weights of the use case graph. Then the cyclic nodes are
transformed to a tree with the strongest nodes remained
as two cyclic nodes as in the right-most of Fig.3 — that is,
(1) UC1,5 and (2) UC2, 3, 4.

Fig. 3. Finding an initial seed solution: The use case-graph is
drawn with the relationships and transformed to an initial seed

with the classes removed and the edges cut with the MST rule.

As seen in Fig. 2, the next step is to find a seed solution
by utilizing MST (Minimum Spanning Tree). This group
shall serve as a seed container to which the relevant
classes are assigned according to the dispatching rule.
Then use cases are assigned to the class groups in a
reverse way. This iterative process stops at a point where
the dissatisfaction level does not decrease. Then, one
edge is cut and the step is iterated until all components
are identified as represented in the later part of Fig. 2. As
discussed earlier, the edge weights are the sum of three
possible relationships (i.e., use case x use case, use case
X entity, entity x entity) as computed with the distance
and the similarity rule. For example, suppose that a set of
use cases are related and thus grouped into a package to
which in turn we found any related entities. Here the use
cases and the entities are considered similar (distant) and
thus may well (not) be grouped together in case there
exist similar (distant) relations at the intersections
between use cases and entities. This is illustrated by the

edge weight (EWij) as in Equation (1).

ZRE:'& 'REjk

EW . = W k€ Classes
' Y (RE, -RE,Y (1)

VvV ke Classes

Taken together, the total edge weight (TEW) for all three

matrices is defined as Equation (2) where

w,+w,+w, =1,0<w, <1

W, > Yce,

& JeUUCi UCY

cu, .. . Y
DD TGS 35 WA 2 eI)

TEW , =

Then the dispatching rule is employed to assign the
classes to the use case groups and vice versa by
computing the relation sum (RS) between group i and

class j as in Equation (7).

RS, =) RE, 3)

keGroupi

Firstly, this rule generates an initial feasible solution in
which each group contains one class at least. The first
step proceeds over the following steps.

1. Calculate the relation sum for all use case groups.

2. Count the number of assignable classes for each group.
3. Assign the class to the use case group that has the
minimal number of assignable classes. Ties are broken
by assigning the class that has the larger sum of relations.
4, Repeat the above steps 2 and 3 until each group
contains one class.

Then we assign .classes to use case groups that have the
largest RE. The following steps are performed.

1. Choose the class that has the maximal relation sum.

2. Assign the class to the corresponding use case group.

3. Repeat the above steps 1 and step 2 until unassigned

-360 -

class does not remain.

D RE,
. "
Obj Value - {(alli and j)e Group (4)

2.2 RE,

The objective value (ObjValue) in Equation (4) is
defined as the dissatisfaction level of identified
components, which minimizes the sum of relation
weights that fall outside the resulting groups. For any
iteration, the objective value is calculated and this
process is repeated until its outcome value does not

improve any more.

4 A Field Experience with the Collaborative
Process
4.1 The case details
The proposed process was run at a field for a motor sale
corporation in Korea, which was locally the first to
specialize in auto sales and service. The corporation
experiences difficulties due to sluggish economy and
surging of bad consumer credit and its sales have been
steadily decreasing from $3.5 billion in 2002, $3 billion
in 2003 to $2.8 billion in 2004. To launch more
aggressive sales programs, the top manager decided to
renovate the legacy system written in COBOL to be
redesigned in UML and implemented using component
tools and technologies. The company has served
customers through well-designed business processes
| operated since its foundation in 1966, which comprises
human

resource,

accounting, installments,

sales,
procurement, logistics, branch management, account
receivable, marketing and used-car sales. A total of
657MM were used over the 14 month long development

process of eight iterations. The estimated function points

of the project were 18,476. The number of use cases and
entities was 1,008 (3,805 functions) and 3,593
respectively. The following section presents the core
sales business process (3,203FP, 84MM) as to how user
requirements were collected, coordinated and deployed

into component models with the proposed process in this

paper.

4.2 Activity details for requirement analysis

Requirement ana'lysis for the sales business was
performed to identify use cases and entities to be
associated in a subsequent phase. A careful analysis of
the sales produced a total of 492 functions, which were
then utilized as input to use cases. In this case, we
limited the size of use cases under 50 FPs and a total of
113 use cases were identified. Remember another
pre-requisite to the algorithm was a set of logical entities.
A total of 81 logical entities were identified from
candidate nouns dug out of various sources such as usé
case descriptions, business glossary and interviews with
business users. The candidate nouns and entities were
refined and further decomposed depending upon if they
had any relevant attributes. The requirement analysis was
often revisited depending upon additional analysis we
had with business users in the overall design phase (see
the reverse loop of Fig. 1). Thus, any further analysis
with relationships matrices was conducted with 113 use

cases and 81 entities.

4.3 Activity details for building relationships between
use cases and classes

Once use cases and entities were prepared, these
ingredients were cross-tabulated to generate the relation
matrices. The first matrix related all identified use cases
each other to group them into use case packages
depending upon the strength of their relations. For

example, the stereotype ‘include’ relation was regarded

-361 -

as stronger than the ‘extend’ one. Another relation matrix

was concerned with any possible relationships among

entities such as aggregation, composition and inheritance.

The last relation matrix of primary interest to this study
.déalt with the relationships between use cases and
entities. This matrix recorded all weights for the
functional requirements of intersections between use
case and entities (see Fig. 4). The matrix was examined
if there existed any black holes (i.e., an entity never used
by any use cases) and miracles (a use case that did not
use any entities). Also read-only entities were examined
if they were created in other domains (faulty otherwise).
The parameters were set as follows:

* The number of components to be identified was set
between 10 and 20.

* Four important functional types considered in this
study included create (C), read (R), update (U) and
delete (D). The weights given to the transaction types
were set as 2 for R and 8 for C, U and D.

2]
-
"
| o
o)
| o
|
[D
| D
[O
o
4
I
4O
4 O
g o
1 o
4O
o
o
_Of
10

RAREAANANRNANANAN

Fig. 4. Relationships between use cases (row) & classes
(column). The scores were given according to the policy.
Partial data are presented here with 54 use cases and 43 entities
The relations of use cases to classes were well scattered
as seen in Fig. 4 and it seemed not easy to identify any

significant components. The horizontal pattern occurred

for the relationship of a use case with many entity classes.

This pattern was often observed for any batch processing

which required access to many relevant entities. On the
other hand, the vertical pattern referred to the other case
where an entity class was used heavily by many use
cases as often witnessed between the base use case and

the included use case.

4.4 Activity details for grouping of use cases and
classes into components

The data as seen in Fig. 4 were fed to the algorithm. This

resulted in a total of 13 components (i.e., gray rectangles

as seen in Fig. 5. Remember the objective was to
minimize the penalty that would have on the component
group by removing any relationships out of the group.
Thus any further searching for any meaningful
components would be abandoned due to the
dissatisfaction level minimized with 13 components as
explained earlier. The dissatisfaction level was 30.57%
in this case.

Fig. 5 shows that the biggest component contained 13
use cases and six classes. There also existed two of fine-
grained components with one to one relationship
between use case and class. We had a number of
‘semantic’ sessions with the business users and
developers if the grouped components were meaningful
in their business operations. The semantic session
proceeded smoothly with the relation matrices as there
recorded all penalties in numbers and all stakeholders
could easily understand what to lose by getting in and
out any classes. The results of the semantic process are
displayed in thick white rectangles in Fig. 5 and any loss
of meaningful relationships were insignificant in

comparison to the algorithmic result (i.e., the gray

rectangle).

~362 -

=]
=

clo
o

(o] =d (=]

~{olofo

clo|ajore

i=di=] =] =] =]

PR olooio

id-ololokiolelolele

clojop Clejoloxsm0lo

=l=T[+] «]{e][=] =] =] =] la] o] o] =] -]

ofoblelelelojeloklole]ofelole
olekloleleleloklelelelaloiole

sloblelelelolololole o)l kiln

=] 211=] w] (=B (o] o] (T [~} =}i=]{=] =] =] =] (o] -] -] =] (=]

[ol[=]ir] e} u] edio] L) of (] (n] =] =] o) o} a) < (=] (=] o =] =]
[a]+]1+] oX'w) oY [e]{a] a} o} v] o (v] (o) o] =] af («] (=] w]l=] o}
(=Y (=2 =] =) o] (<]] =] la) =] afia]ia] o =] o] =)ol o] n) o]
(=110 (=] =171 =1 (=1 G =X (=1 (=3 =1 =0 = =0 =g =0 ved 1= d ot 1
{alloed]]l oY= L wd(a]ie] =) =]ial ofia] of (o] o] g =] =)

lolololoklolklel-kislokleleleloklololrlele

[a]fe] +1(v]] o] afla)i-] -F =] x] o] o] (e] <]

clorler Led e

felfa] LY (vl =Y (~R el fad] oY o] (o] (wfle] o) a) a)(wfic] v)le) =] afia]a] o] ed o) la)(e] o) a]ie]

wilololololleloloiclolelelelclelockloklelolejololclolololoelel-zo|o

blofelelelolololelololelcklelololerlokelololelelelejoleklole o fs

olojelojelopeiclojoloo|eioloicoipiio oo oo oo+ oo

dolololo]elelefelelelelefeielofejelelefololeleleleoloioiciololelele o flelele
slolokojefoiofololefofeloielololololololeolelolofoloje e bick ol loloiololo
olololofo|olofolelelololoiololiolelojelololelojeolofcolelolole koo tiolelo

ololololololelolefoloeloleloblololololeiololololololololoiobivlolo frlelolo
_'foooooooooooooooooooooooo-ﬂoooooooooo{éc

0
Q
[+]
Q
[+]
4]
2
o
o
[+]
[+]
[+]
1)
o
g
9
o]
]
0
2
4]
4]
o
]
[+]
[+]
4]
o
o

]
L)
[+]
0
o
0

olofololojojelelololololololelelelolelek ok ielolele|elolelelololelo)

elolelelelelele

deilojololelelololelelelelelolelolelelolelokleleleloleielelelelo kbl |o o lole

l) o)) o] (+}] (=] o] (=] [+] =] (o] v] (=] (=] [a] (=} =] (=] «)la](a} o]] o] w] v]la]ia] o] «Qyed =] =0 =] =}

o|-|elele]eloleklolelololololojelololololole]o]e

ololololojololojolofo iclolsiiniin o

ololelolelelelelolelololelelkeloblelelelolelck kiololealelelolelelole o s

(o] =] (a]] (] (=]] o] (o] al ol luY [l [+] (o] (o] (o] o] o] =] (o] (wgla)ia]la) v] =fiw]io) o] o] i) =) ook kklololloloklele jolelololojele

ciolojolelolelolelolololojeiolelelojoleojoloE
ololololeelololelolelelololele|o o foloiclo|ok
olofelolololeleleloblolo o |ololoiclelolelo ol

~d [O I A O fen

doleleloklelolelolelolo o lelelele ololele e Bl laibtk
alolojeololelelelelelolejelelofelolo]efololo]o]ok

sfalololelelolololelele

llolelolel~=lelelele
lolololokelolelelelele

:_,I.:.OOOFO’DOOOOOOOOOOOOOOOOOOO0OOQODOO0ODDOODOOQOOOOOOOOObQOOOOOD

ololololelolololo =l lololkeloloklolsl-lollalo lbobbkleloleivllbisloleiclalokiclelookilelbloleklolokiclobivloiobiniola
slololololelololololololololelolelelalcfelojelelclolelolelolelolklkiolololelelelelolo ol ek lolokiololele oo oo lolo

slelkelolololelelelellololelololeloicloiciolelolelolelolelolololelelolelolol«lolelelololololelololoin oo lobafmhalks g

(=]
clololoblolelebleklbkloloklolelelolelele e loiololelelelelelelelele ielelekele|cl |~ o |- Ei=

olololololeloleleleklololelolele ol lejoi=lololelolelolofoielelelole|olofolelelelolo ool lelojofo lofs
chlklelolelellclelelelclblelolbiclololeloleleloleklolelololciclkelotolololololol- o ko |- lelofiii=|

clololololeleteloiclololololelelololelolalololelelelelolofololelalolo]o lo]o o oo lopilsisin
clololkleloleleloklcklekplolelolelelelolololeielelolelololole oo jofe ity
ol] | =] =] {=¥1a]a] 2] o]] (=] o] a] o ladie] o] (o] =] =] a] o] (] =] =] =] o]] =]~

clojelalololeleleloleloloicloloiclelotzlelole o lofole]o s

[«] v} =) vl n]la] o] (o] (] o] =) w) =] o) v

Hidlofo (o

Q
[+]
[+]
v}

o loloeife
oooff

[4]
e
O

ololok

>

0

wilolooleleislolololeloleloiielololole jololojc Bl
ol - e e

Q
o
D
[+]
[+]
D

oo o oo o

UODOOOk
b

(=] =] o] a]a] o}

ololelolelel

clojolotelok

Iolelelelole 3k

slolelolejof

4]
o
o
D
o
0

olo|of

?

Fig S. Running grouping algorithm with 113 use cases & 81

denotes the automatic

entity classes. The gray rectangle

approach whereas the thick white (| —-|), the semantic process

4.5 An exemplary component model for the detailed

design

The diagrams that could be produced in reference to the
grouping result may include component diagrams,
assembly diagrams, class diagrams and sequence
diagrams. Fig. 6 shows two of these UML diagrams. The
identified components were sufficiently and correctly
specified in the detail design phase so that the use cases
“of not only the sales business but also other domains
could be realized in reference to them. As seen in Fig. 6,
the provided interfaces were drawn from the functional
requirements of a component. On the other hand, the
required interfaces were functionalities of other
components. Presented in the right-side class diagram of

Fig. 6 were the details of a class inside the component.

dal- |- [~felofololelelo ol ololelelelololololololololo|o ol ol |+ 2 o= E ololo i lolo b lo - bioleielololo o [oo |« ojo

Component Diagram

e T W
R /"/ [

i
| e .

uasiali

Fig. 6. Component & class diagrams. The left component
diagram shows all provided and required interfaces. The right

one detailed classes for a component with functional operations

5. Discussion

Although CBD has been widespread in practice, little .is
known as to the process user requirements could be
captured into. reusable software components. This task,
however, requires much cognitive effort to take into
account all possible interactions among classes and
components. Firstly, for large and complex systems,
there are often more than hundreds of classes and
functional requirements to deal with and thorough
examination of such data would be simply impossible
and error prone. Secondly, the iterative and incremental
approach as often adopted in recent CBD practice,
changes in user requirements also force modification to
components identified earlier. Thus more systematic
approach is required to reduce error-proneness in
component identification. As proven to be useful in
managing functional and non-functional requirements of
the users in various industries, the QFD process was
employed in this paper to identify software components.
Three potential relationship matrices were cross
tabulated with use cases and entities and an algorithm
was developed by the author to semi-automatically
deploy user requirements into software components. The

algorithm was validated for the first case and resulted in

an acceptable solution with appropriate degree of

-363 -

granularity and dissatisfaction. We further validated the
algorithm with the case that contained a horizontal
pattern and thus would possibly lead to a ‘king-kong’
component. Expectedly we observed a coarsely grained
component. Any decoupling approach would be valued
to decompose such big sized components. The algorithm
was designed to allow to easily plug any expert opinion
into play in the form of weights to be given for any
intersections among those elements of use cases and
classes that are so crucial in object-oriented analysis and
design. The QFD based algorithm can be run repeatedly
until the solution satisfies the expected quality of
Considering that

reusable components. enterprise

software development often requires analysis of
hundreds of use cases and classes and its manual handing
is a daunting task, further research is required with more
practical cases to validate and improve the algorithm. It

is also useful to study the impact of parameters and the

way to easily incorporate expert opinion into the systems.

[References]

[1] Glass, R. L.. The Realities of Software Technology
Payoffs. Communications of the ACM 42 (2), 74-79. ,
1999

[2] Terry, J., Standing, C. . The Value of User
Participation in E-Commerce Systems Development.
Informing Science Journal 7, 31-45. , 2004

[3] Hilbert, D. M., Robbins, J. E., Redmiles, D. F..

Involvement in

Supporting Ongoing User

Development via Expectation-Driven Event

Monitoring. Technical Report UCI-ICS-97-19,
Department of Information and Computer Science,
University of California, Irvine, 1 - 11., 1997

[4] Kaindl, H.. Difficulties in the transition from OO
analysis to design. IEEE Software 16 (5), 94-102. ,
1999

[5] Kaindl, H.. A Design Process Based on a Model

Combining Scenarios with Goals and Functions.
IEEE Transactions
Cybernetics 30 (5), 537-551., 2000

[6] Gulcin, B., Orhan, F.. Group decision making to

on Systems, Man , and

better respond customer needs in software
development. Computers and Industrial Engineering
48, 427-441. , 2005

[7] Larman, C. Applying UML and Pattemé: An
Introduction to Object-Oriented Analysis and Design
and the Unified Process, 2nd Edition. Prentice-Hall. ,
2002 |

[8] Akao, Y.. New product development and quality
assurance deployment system. Standardization and
Quality Control 25 (4), 243-246. , 1972

[9] Kudikyala, U. K., Vaughn, R. B.. Software
requirement understanding using Pathfinder networks:
Discovering and evaluating mental models. The
Journal of Systems and Software 74, 101-108. , 2005 |

[10] Kim, K. J.,, Moskowitz, H., Shin, J. S.. Design
Decomposition for Quality Function Deployment.
Essays in Decision Making, Springer-Verlag, Berlin,
215-236., 1997

[11] Etzkorma, L. H., Hughes, Jr.,, Davisa. C. G.
Automated reusability quality analysis of OO legacy
software. Information and Software Technology 43,
295-308. , 2001 |

[12] Jain, H., Chalimeda, N., Business component
identification. Enterprise = Distributed Object
Computing Conference, Proceedings. Fifth IEEE
International, 183-187.

[13] Lee, J. K., Jung, S. J., Kim, S. D, Jang, W. H..
Component identification method with coupling and
cohesion. Software Engineering Conference, APSEC.
Eighth Asia-Pacific, 79-86. , 2001

[14] Jang, Y. J., Kim, E. Y., Lee, K. W.. Object Oriented
Component Identification Method Using the Affinity

Analysis Technique. Lecture Notes in Computer

~364 -

Science 2817, 317-321., 2003

[15] Albani, A., Keiblinger, A., Turowski, K.,
Winnewisser, C.. Domain Based Identification and
Modelling of Business Component Applications.
Lecture Notes in Computer Science 2798, 30-45. ,
2003

[16] Karlsson, J. Managing software requirements using
quality function deployment. Software Quality
Journal 6, 311-325. , 1997

-365 -

