측정 불확도 산정 및 표현 (Expression of Uncertainty in Measurement)

최 성 운* Choi Sung Woon

Abstract

The ISO "Guide to the Expression of Uncertainty in Measurement (GUM) establishes a unified method for evaluating uncertainty in measurement worldwide. This paper discusses the concepts and procedures of uncertainty evaluation.

Keywords: Uncertainty, Measurement, Unified Method

1. Introduction [3]

1.1 Five Levels of Standards

Working Level: This level includes Gages used at the work center.

Calibration : Standards

These are standards to which working level standards are

calibrated.

Functional: Standards

This level of standards is used only in the metrology laboratory of the company for measuring precision work

and calibrating other standards.

Reference: Standards

These standards are certified directly to the NIST and are

used in lieu of national standards.

National and : International Standards This is the final authority of measurement to which all

standards are traceable.

1.2 Download Direction of Traceability

- (1) National Institute of Standards and Technology
- (2) Standards Laboratory
- (3) Metrology Laboratory
- (4) Quality Control System (Inspection Department)
- (5) Work Center

^{*} 경원대학교 산업공학과 교수

- 2.Uncertainty in Measurement [1, 2]
- 2.1 Uncertainty
- 2.1.1 Old: Systematic Error, Random Error

New: Type A, Type B (확률에 근거를 둠)

2.1.2 Type A: 반복측정값의 빈도 분포에 근거한 확률밀도 함수에서 구함.

Type B: 기존의 정보 또는 문헌을 통해 측정값이 가질 수 있는 확률말도 함수 를 가정하여 구함.

2.1.3 Type A

$$U_A = U(x) = s(x) = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{\frac{1}{2}}$$

2.1.4 Type B

$$U_{B_1} = U(x) = \frac{a}{Z_{\frac{\alpha}{2}}} (Z_{\frac{\alpha}{2}} = 1.64, 1.96, 2.58)$$

(1) Normal Distribution:

:신뢰수준90%,95%,99%)

- (2) Rectangular Distribution : $U_{B_2} = U(x) = \frac{a}{\sqrt{3}}$
- (3) Triangular Distribution:
- (4) U Distribution:
- 2.1.5 Combined Standard Uncertainty

: Root Sum Square, Additivity of Variance, Propagation

$$U_c = \sqrt{U_A^2 + U_{B_1}^2 + \dots + U_{B_n}^2}$$

2.1.6 Expanded Uncertainty

U=k U_o k= Coverage Factor (2~3)

2.1.7 교정성적서의 불확도

보고된 측정의 확장 불확도는 정규분포에서 약 95%의 포함확률에 상응하는 Coverage

Factor k=2를 합성 표준 불확도에 곱한 값

2.1.8 유효 자유도 : Welch - Satterthwaite

$$v_{cff} = \frac{U_c^4}{\sum_{i=1}^{N} \frac{U_i^4}{v_i}}$$

3. 측정 불확도 예 [4]

3.1 Type A

Given : 표준자석 NMR 교정 : Hall Gaussmeter 를 Transfer Device로 사용 0.1T 표준자석을 n회 반복측정 $(x_1, x_2, x_3), \cdots, x_n$

Find: Type A

$$U_A = U(\overline{x}) = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x}) \right]^{\frac{1}{2}}$$

3.2 Type B

Given : (1) 표준자석 교정 불확도 $b_1 2 \sigma$ Normal Distribution

- (2) NMR Gausmeter 정확도 b $\frac{1}{2}$ Rectangular Distribution
- (3) 자장균일도 b ; Triangular Distribution
- (4) Hall Gausmeter 분해능 b : U Distribution

Find: Type B

$$(1) \ \ U_{B_1} = \frac{b_1}{2}$$

(2)
$$U_{B_2} = \frac{b_2}{\sqrt{3}}$$

(3)
$$U_{B_3} = \frac{b_3}{\sqrt{2}}$$

(4)
$$U_{B_1} = \frac{b_4}{\sqrt{2}}$$

3.3 Combined Standard Uncertainty

$$U_c = \sqrt{U_A^2 + U_{B_1}^2 + U_{B_2}^2 + U_{B_3}^2 + U_{B_4}^2}$$

3.4 Expanded Uncertainty

4. Summary

- · Uncertainty: Type A, Type B
- · Type A: Standard Deviation, Central Limit Theorem
- · Type B: Normal, Rectangular, Triangular, U Distribution
- · Combined Standard Uncertainty: Propagation
- · Expanded Uncertainty: Coverage Factor, Welch Satterthwaite

References

- 1.KSA3000:2004, 한국표준협회, 서울, 2004.
- 2. R.D. Carlsen, J.A. Gerber, J.F. McHugh, Manual of Quality Assurance Procedures and Forms, Prentice Hall, Englewood Ciffs, NJ, 1992.
- 3. B.Wortman, CQE Primer, Quality Conucil of Indiana, 2005.
- 4. http://kolas.go.kr