154kV 전력케이블용 XLPE 절연체와 반도전 재료의 비열 및 열전도

Specific Heat and Thermal Conductivity of XLPE Insulator and Semiconductive Materials for 154kV Power Cable

  • 이경용 (원광대학교 전기전자 및 정보공학부) ;
  • 양종식 (원광대학교 전기전자 및 정보공학부) ;
  • 최용성 (원광대학교 전기전자 및 정보공학부) ;
  • 박대희 (원광대학교 전기전자 및 정보공학부)
  • 발행 : 2005.05.27

초록

To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconductive materials in 154kV underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added 30wt%, carbon black, and the other was made of sheet form by cutting XLPE insulator in 154kV power cable. Specific heat (Cp) and thermal conductivity were· measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$}], 55[$^{\circ}C$] and 90[$^{\circ}C$]. In case of semiconductive materials, the measurement temperature ranges of specific heat were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

키워드