SiGe pMOSFET의 채널구조와 바이어스 조건에 따른 잔음 특성

Low-Frequency Noise Characteristics of SiGe pMOSFET Depending
upon Channel Structures and Bias Conditions

Sang-Sik Choi, Hun-Duk Yang, Sang-Hoon Kim, Young-Joo Song, Kyoung-Ik Cho,
Jeonng-Hueon Kim, Jong-In Song, Kyu-Hwan Shim
Chonbuk Univ, ETRI, GIST

Abstract: High performance SiGe heterostructure metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated using well-controlled delta-doping of boron and SiGe/Si heterostructure epitaxial layers grown by reduced pressure chemical vapor deposition. In this paper, we report 1/f noise characteristics of the SiGe MOSFETs measured under various bias conditions of the gate and drain voltages changing in linear operation regions. From the noise spectral density, we found that the gate and drain voltage dependence of the noise represented some features, as usually scaled with $1/f^2$. However, 1/f noise was found to be much lower in the device with boron delta-doped layer, by a factor of 10^{-1}~10^{-2} in comparison with the device fabricated without delta-doped layer. 1/f noise property of delta-doped device looks important because the device may replace bipolar transistors most commonly embedded in high-frequency oscillator circuits.

Key Words: 1/f noise, SiGe, MOSFET, delta-doping

1. 서론

SiGe 전자는 기존의 안정화된 실리콘 반도체 기반으로 하고 있어서 우수한 양산 능력과 자기가 적합한 반도체 소자이다. 게이트 측정 집적 특성, 선형성, 고주파잡음, 저주파잡음, 저전력 특성이 모두 우수하여 수GHz 대까지의 고주파 고속통신 분야나 광통신 IC를 자기가 제조할 수 있는 이점이 있다. 반도체 기술의 핵심인 CMOS 소자의 특수기판은 수십 번도 필요 이상으로 갖는 소자 제작으로 밝혀지고 있다. 이러한 추세 속에서 SiGe는 실리콘 기판이 sub-microcm이하로 내려가기 전 존재 하는 subthreshold 전류, 1/f 잡음, 선형성에 대한 문제를 극복할 것으로 전망된다 [2, 3].

CMOS에서 산화막과 실리콘 사이에서 운반자의 충돌과 트랩으로 인한 flicker 잡음과 게이트와 채널 저항으로 인한 잡음특성이 대량히 높다. flicker 잡음에 대한 구현의 물리적 모델은 아직 알려지지 않았지만 고효과 영역에서 쓰이는 전자 시스템의 특성에 실제로 큰 영향을 미친다. flicker 잡음은 주파수에 비례하여 1/f 잡음이라고 해서 Si 소자에서 보다 SiGe 소자에서 더욱 개선될 1/f 잡음특성을 나타내고 있다 [4].

본 논문에서는 SiGe p-MOSFET의 1/f 잡음 특성을 알아보았다. 선형 영역에서 바이어스 조건에 따른 잡음 특성의 변화를 측정 분석하였고, 소자의 성능 특성을 위한 델타도핑이 잡음 특성에 미치는 영향을 알아보기 위하여 도핑 없이 제작한 소자와 비교하여 분석하였다.

2. 실험

본 실험에서는 게이트의 길이가 0.35μm인 p-MOSFET을 사용하였으며, Si/Si$(2+2)$과 Si quantum-well 구조의 성장에

RCPVD (Reduced Pressure Chemical Vapor Deposition)가 사용되었다. n-type 실리콘 기판에 100Å의 Si 씌앗층, 200Å의 Si$(2+2)$ 채널층, 70Å의 Si cap층을 차례로 성장하였다. 게이트 산화막은 800℃, H$_2$O 분위기에서 열화

에 의해 70Å 두께로 성장하였고, RCPVD를 이용하여 phosphorus 도핑(>10^{19} cm$^{-3}$) 게이트 퓨리즘을 550℃

여서 성장하였다. 그림 1은 측정에 사용된 소자의 전면도

입니다. 보다는 도핑 없이 성장시킨 소자이고, B10은 보는

1×10^{12} cm$^{-2}$으로 펌프도과정하였다.

잠재 측정 시스템은 SR570 잠재 측정기와 Agilent

E4440A 소프트웨어 분석기 사용되었고, PC의 VEE프로그

램과 GPIB에 의해 제어되었다. 잠재는 Noise spectral density(Δ^2/Hz)로 50만 평균한 값이고 10Hz~1MHz대역에서 측정하였다.

그림 1. SiGe p-MOSFET의 단면도.

3. 결과 및 고찰

본 실험에서 잡음은 Drain Current Spectral Density(S_D

Δ^2/Hz)로 측정하였으며, 다음 식에 의해 Input Noise Power

Spectral Density(S_{inp}, Δ^2/Hz)로 변환하였다.
\[S_{\nu_k} = \frac{S_{\nu_k} (I_d \cdot g_m)^2}{I_d} \]

그림 2는 W/L=30μm/0.35μm, 게이트 Finger 2개인 소자의 잡음 특성을 측정한 결과이다. B08 소자에서 주파수가 10Hz일 때 |V_{0-V_{th}}|가 0.1V에서 0.9V로 증가할수록 Noise Spectral Density가 2.33×10^{-17}V^2/Hz에서 2.47×10^{-16}V^2/Hz로 100배 정도 증가하였다. B10 소자에서도 Noise Spectral Density가 1.44×10^{-17}V^2/Hz에서 8.38×10^{-17}V^2/Hz로 게이트 전면에 비해하여 증가하였다. 같은 바이어스 조건(|V_{0-V_{th}}|=0.1V, V_D=400mV)에서 두 소자를 비교해 보면 B08소자는 2.33×10^{-12}V^2/Hz, B10소자는 1.44×10^{-13}V^2/Hz로 약 10배가량 한 소자가 잡음 특성이 다uly수해를 알 수 있었다. 산업 영역에서 게이트 전압이 증가할수록 채널의 공실품액이 증가함에 따라 채널에 흐르는 전류가 증가하면서 채널과 신호가운계에서의 트랩에 의한 잡음이 증가한 것으로 예상된다.

다음으로 잡음의 드레인 바이어스에 따른 변화를 알아보기 위하여 |V_{0-V_{th}}|=0.5V로 고정하고 드레인 전압을 -100mV에서 -400mV로 변화시켜 잡음을 측정하였다. 그림 3의 B08 소자에서 드레인 전압이 증가할수록 10Hz에서의 Noise Spectral density도 5.19×10^{-12}V^2/Hz에서 1.39×10^{-11}V^2/Hz로 30배 정도 증가하였다. B10소자에서도 2.20×10^{-13}V^2/Hz에서 2.28×10^{-12}V^2/Hz로 잡음이 증가하였고, B08 소자에서 비해 23배 정도 증가한 잡음 특성을 보았다. 드레인 바이어스가 증가할수록 전극에 의해 온전자가 가속되어 높은 에너지를 얻게 되는 경우 impact ionization이 의해 hot-carrier가 증가하여 잡음이 증가한 것으로 생각된다[5].

그림 3. 드레인 바이어스에 따른 (a)B08, (b)B10 소자의 noise spectral density.

그림 4. 게이트 연역 변화에 따른 (a)B08, (b)B10 소자의 잡음특성.

그림 4는 게이트 연역에 따른 잡음 특성을 알아보기 위해서 게이트 폭과 finger수를 다르게하여 측정한 결과이다. 2 finger 0.35×30μm^2, 2 finger 0.35×60μm^2, 10 finger 0.35×100μm^2, 그리고 10 finger 0.35×200μm^2의 소자에서 게이트 연역이 증가할수록 잡음도 증가함을 알 수 있다. 여기서도 채널에 흐르는 전류 증가에 의해 잡음이 증가한 것으로 예상해 볼 수 있다.

4. 결론
본 논문에서는 SiGe p-MOSFET 소자의 바이어스 조건, 소자 크기, 온도장에 따른 잡음 특성을 분석하였다. |V_{0-V_{th}}|을 0.1V에서 0.9V까지 변화시켜 측정한 결과 잡음이 온도장이 없는 소자에서 100배, 온도장 된 소자에서 60배 정도 증가하였다. 드레인 전압을 -100mV에서 -400mV까지 변화시켜 측정한 결과에서도 잡음이 온도장이 없는 소자에서 30배, 온도장 된 소자에서 23배 정도 증가함을 확인할 수 있었다. 동일한 바이어스 조건에서 두 소자를 비교해본 결과에서는 온도장 된 소자가 잡음 특성을 보였다. 소자에 흐르는 전류가 증가하면서 채널과 신호가운계에서 trap-detrap되는 운반자가 증가하여 잡음이 증가한 것으로 이해할 수 있고, 억지된 바이어스가 증가할수록 드레인의 높은 전극에 의한 hot-carrier 효과로 인해 잡음이 증가한 것으로 사료된다.

감사의 글
"본 논문은 숙학진흥재단의 산간수정연구지원사업(KRF-2004-003-D00889)으로 수행되었으며, 한국전자통신연구원의 SiGe소자팀의 협조에 감사드립니다."

참고 문헌