Human Fatigue Inferring using Bayesian Networks

베이지안 네트워크를 이용한 인간의 피로도 추론

  • Published : 2005.05.27

Abstract

In this paper, we introduce a probabilistic model based on Bayesian networks (BNs) for inferring human fatigue by integrating information from various visual cues and certain relevant contextual information. Visual parameters, typically characterizing the cognitive states of a person including parameters related to eyelid movement, gaze, head movement, and facial expression, serve as the sensory observations. But, an individual visual cue or contextual Information does not provide enough information to determine human fatigue. Therefore in this paper, a Bayesian network model was developed to fuse as many as possible contextual and visual cue information for monitoring human fatigue. At the experiment results, display the utility of the proposed BNs for predicting and modeling fatigue.

본 논문에서는 다양한 시각적 정보와 일정한 관련 정보를 통합하여 인간의 피로도를 추론하기 위하여 베이지안 네트워크를 기반으로 한 확률 모델을 제안하고자 한다. 먼저 눈꺼풀의 움직임, 시선, 머리의 움직임, 그리고 얼굴 표정 같은 개인의 상태를 특성 지을 수 있는 시각적 매개변수를 측정하였다. 그러나 각각의 시각적 정보와 일정한 관련 정보만으로 인간의 피로도를 결정하기에는 충분하지 않으므로, 본 논문에서는 인간의 피로도를 모니터링 하기 위하여 가능한 많은 관련 정보와 시각 정보를 융합하여 베이지안 네트워크 모델을 개발하였다. 실험 결과, 피로 예측과 모델링을 위해 제안된 베이지안 네트워크의 유용함을 확인 할 수 있었다.

Keywords