Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • 발행 : 2005.05.27

초록

신경회로망은 지능제어알고리즘 중의 하나로 학습능력을 가지고 있다. 이러한 학습능력 때문에 많은 분야에서 널리 사용되고 있으나, 지능제어의 단점인 안정도 문제를 수학적으로 증명하기 어렵다는 문제점을 갖고 있다. 본 논문에서는 신경회로망의 한 종류인 RBFN과 적응제어기법을 이용하여 로봇 매니퓰레이터 궤적 제어기를 구성하고 자 한다. 본 논문에서는 RBFN의 파라메터들을 적응제어기법을 이용하여 수학적으로 구하였고, 시스템의 안정도를 수학적으로 UUB를 만족한다는 것을 증명하였다. 그리고 수평다관절로봇 매니퓰레이터 궤적제어기에 적용하였다.

Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

키워드