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ABSTRACT: We introduce a new approach to optimize the
parameters in biological kinetic models by quantifier
elimination (QE), in combination with numerical simulation
methods. The optimization method was applied to a model
for the inhibition kinetics of HIV proteinase with ten
parameters and nine variables, and attained the goodness of
fit to 300 points of observed data with the same magnitude
as that obtained by the previous optimization methods,
remarkably by using only one or two points of data.
Furthermore, the utilization of QE demonstrated the
feasibility of the present method for elucidating the
behavior of the parameters in the analyzed model. The
present symbolic-numeric method is therefore a powerful
approach to reveal the fundamental mechanisms of kinetic
models, in addition to being a computational engine.

1 INTRODUCION

The availability of genomic sequence information is
facilitating the fundamental understanding of biological
phenomena on the molecular level. By utilizing complete
genomic sequences, for example, the expression of many
genes can be simultaneously monitored to reveal the
regulatory network on a genomic scale [1]. As a further
challenging investigation, systems biology is aiming at
modeling and simulating the global network of biological
molecules in a cell [2]. Interestingly, the investigations in
these studies share one procedure in the numerical analyses;
in the kinetic model constructed for the corresponding
biological phenomena, the kinetic parameters are estimated
by various optimization methods, based on the observed
data. Subsequently, the parameter optimizations emerge as
mathematical subjects in a wide variety of issues in
molecular biology.

Many methods for local and global optimization have
been developed [3, 4], and some simulators based on
various optimization methods have also been designed (e.g.
[5]). In the optimization methods, the estimation of kinetic
parameters plays a key role in the development of kinetic
models, which, in turn, promotes functional understanding
at the system level, for example, in several biological
pathways [6, 7]. In addition to the development of
optimization methodology, the high performance of
computers for numerical calculations also supports the
optimization of the kinetic parameters in the complex
dynamics within a reasonable amount of computational
time.

* To whom correspondence should be addressed.

The high computer performance supports not only the
numerical calculations based on calculus, but also the
symbolic computations based on computer algebra (CA).
Indeed, symbolic computation is popular in software
platforms such as Maple [8] and Mathematica [9], and the
use of symbolic computation is increasing rapidly in
biology [10]. The quantifier eliminator (QE) is one of the
subjects in CA [11]. The QE was originally described in the
mathematical proof by Tarski [12], which stated that the
elementary theory for reals is decidable. Although the
original algorithm was too complex to sofve the problem, a
new method by Collins [13], cylindrical algebraic
decomposition (CAD), allowed efficient implementation.
Subsequent improvements in the algorithm provided
feasible software platforms for symbolic computation (e.g.,
[14]). Although some applications of QE to biological
issues by symbolic computation were reported [15], an
amalgam of symbolic computation by QE and numerical
calculation has not been designed.

In this paper, we developed a novel optimization method
in combination with symbolic computation and numerical
simulation. A procedure for parameter optimization was
designed to solve differential equations by QE in
combination with numerical simulation. The performance of
our procedure is illustrated by optimizing ten parameters
between nine variables in a model for the inhibition kinetics
of HIV proteinase [16]. As for the optimization performance,
the goodness of fit to the observed data and the optimized
parameters are compared with those from the previous
studies [16, 3]. Furthermore, some characteristics of the
symbolic-numeric method are discussed with the behaviors
of the parameters in the model.

2 MATERIALS AND METHODS
2.1 Main Tool

2.1.1 Quantifier elimination

Our key tool for realizing symbolic-numeric optimization is
an algebraic method, quantifier elimination (QE) over the
reals [11]. QE deals with first-order formulas, which consist
of polynomial equations, inequalities, quantifiers (3,V ) and
Boolean operators ( A,v, =, - etc). The QE procedure is an
algorithm to compute an equivalent quantifier-free formula
for a given first-order formula over the real closed field. For
example, for the input Vx(x* + bx + ¢ > 0), QE outputs the
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equivalent quantifier-free formula »°—4c <0 . This
implies that we can obtain a condition for unquantified free
variables that makes the input formula true by QE.
Moreover, if all of the variables are quantified, then QE
decides whether the formula is true or false.

2.1.2 QE for uncertain input data

When we find feasible model parameters according to the
observed data, we can solve some constraints derived by
substituting observed data for the corresponding
variables/parameters in the original constraints. Such
constraints have some uncertainty, due to the inexact input
data. Hence, if we apply QE directly to the constraints, then
there is a real danger of arriving at an incorrect answer.
Actually, we often obtain a “false” result for feasible cases.
In order to extract the nontrivial information of feasible
parameters, even for the incorrect cases, we propose the
introduction of new variables into the constraints (see 2.2).
We call them “error variables”, which play a role in
absorbing the uncertainty due to inaccurate input data. If we
apply QE for the constraints including error variables, then
we obtain possible ranges of error variables, so that the
constraints are feasible. Then we obtain feasible regions of
the model parameters by applying QE again to the
constraints, where the error variables are substituted with
the minimum value of their feasible ranges.

2.2 Mathematical Framework
2.2.1 Problem

In this paper, we consider the following fitting problem: the
biological kinetic model analyzed here is of the form:

%=v,(X,K) (@)

where X={xl,...,xn'} is a set of variables, and

K = {k,..., n } is a set of parameters. The problem is to

fit the parameters K of the model to the observed data
X= {)2:} for t=0,1,.,n; , under the

i=L.,n , 5,

following additional conditions:
(i) Conservation laws: 7,(X)=0,

(ii) Variable ranges: x,eD, ,
a,b e Ru{xo}.

where D, =[a,b]

2.2.2 Basic Formula

Here we set up the leading formula of this paper. As
mentioned above, we have the following constraints F with
error variables e; from kinetic models:

V= Y,
i
where
v, =1¥;—vi(X,K)+ei =0.

For the error variables we introduce a new variable, e,
which means the magnitude of the error variables:
Ie,-| S e
data is given, we consider the following objective
conditions:

. Moreover, for the variables whose observed

20 _ () _
X, -x; =0

to achieve fitting. Then the “basic formula” is given as
FOEX,K, e, e,
(‘P A(X)=0Ax, €D, /\Ieil L e /\)?5.') -x¥ = 0). V)]

We apply our symbolic-numeric approach to formulas
derived by slightly modifying the basic formula according
to various purposes.

2.3 Optimization Procedure

We explain the concrete procedure of symbolic-numeric
optimization, which consists of six parts as illustrated in
Figure 1.

Part (1): Numerical simulation
First we prepare simulation data for X and x;, for which

we lack observed data, by performing a numerical
simulation of the kinetic models.

1. Set initial conditions X and starting values for
unknown parameters K@ as follows:

RO =z )iz1,,n} and RO =K® UK?,

seeny Hly

where K(o) {k(o) - ,k(o)} are starting values, and

K(o) {kfg)l, ,k(i)} are given fixed parameters.
> [RO.R"
* Part (1): Numerical simulation
XX
l Part (2): Formulation
8 F'| —=mme M Foe
= P 1 (3 E
g ar () 0 !
£ s ptafsen
A= Part (4): QE ™
k3
« ax & I<l
v Part (5): Numerical simulation
SSq
[No

Part (6): Termination

Yes

Figure 1: Flowchart of symbolic-numeric optimization.
The variables and values are enclosed by the boxes,
and the procedures are numbered correspondmg to
the description in the text.
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2. By numerical simulation of the kinetic model (1), we
obtain a time series forx; and %:

~) | .
{x,-( ) ti=1..,m,t=0,1,..n} and

i =
®o {;ét) l[i=lymyt =0,,..,0,} .

Part (2): Formulation

After choosing some variables from X, we call them
“focusing variables”, Y, and substitute observed/simulated
data into the remaining variables:

1. Choose a subset Y of X: YcX.

2. Substitute X, X\Y in F’ by the values of ¥, X at
atime point#: & « ;?;') y X & Sr’,.(') , Where x; e X\Y.

Then we denote the new formula as F'(Y,Kjema.€). We
note that by performing a QE computation for the formula,

3Y3K,3e,, Je{F’), we can check the feasibility (true or
false) of F".

Part (3): Computation of offset by QF

Observed data often contain an offset. Therefore, we must
first determine the offset value. Here we consider the case
that the offset appears linearly. For the sake of simplicity,

we assume that only x, has an offset. Let /'y, be the

formula obtained by putting x, — offset into x" of F’,

where offset is a variable for offset. By performing QE for
IX3IK FemuIe(F o), We obtain the quantifier-free
formula p(offser), which stands for the feasible ranges of
offset. Then we substitute the minimum value of the offset
for the variable offset in F’, and we denote it again by
F(Y K},€max-€)-

Part (4): Estimation of e, and K, by OF

First, we use QE to make the magnitude of ¢; as small as

possible, and then we estimate the parameters K, by QE:

1. Compute the feasible range of e,,,: by computing QE for
3Y3K,3e(F’), we obtain a quantifier-free formula =
(emax) describing the feasible ranges of e,,.. Next, we put
the minimum value of e,,,, into e, in F’, and denote the
resulting formula as F''(Y,K,e)).

2. Compute K;: by computing QE for 3Y3e,(F’’), we obtain
a quantifier-free formula 7(K;) describing the feasible
ranges of K.

Actually, the feasible ranges of K; are usually sufficiently

narrow intervals (e.g., about 10°) to choose an appropriate

specific value of K.

Part (5): Computation of sum of squares (SSq)
We estimate the goodness-of-fit for the obtained parameter
values K; from the feasible ranges of K; in terms of SSq.

1. Set initial conditions X and K,.
2. Perform numerical simulation of kinetic model (1).

3. Compute SSq: SSq = Z(&f') - E,('))z .
t

Part (6): Termination

If SSq is smaller than a specific level &, then output K.
Otherwise, set new initial values and go to (1).

2.4 Kinetic Model

We analyzed a model for the inhibition kinetics of HIV
proteinase [16], as shown in Figure 2. The proteinase
monomer (M) is inactive, but the enzyme (£) is active in the
dimeric form. The dimer catalyzes the conversion of the
substrate (S) to the product (P). The inhibitor (/) is
competitive for the substrate and the product, and the
inhibitor-binding enzyme is irreversibly deactivated (£J). In
the model, there are ten parameters and nine variables.
According to the previous studies [16, 3], five parameters
(ky11y ki kop, kg, ksp) are given, and the remaining five
unknown parameters (k;;, k3, ky2, ks;, ks), two initial values
(Einivy Sinit) and the offset of the fluorimeter are estimated by
the present method. The experimental data of the product
[P], which are composed of 300 data points measured from
0 to 3600 seconds, were downloaded from a web site
(http://www.gepasi.org/tutorials/opt/hivfit.html).

M+M = E k(=) k(<)
S+E <= ES K, kn

ES - E+P K

E+P <= EP ka1, ka2
E+1 = EI ksy, ko

EI - EJ ke

Figure 2: Kinetic model for the inhibitor of HIV proteinase.
The start values for ten parameters and the initial values
for nine variables [3] are as follows: ;,=0.1, k;,=1E-4,
k21=100, k22=300, k3=10, k41=100, k42=500, k51=100,

k52=0.l, and k5=0.1; fl =0, YZ =0004, 3’3 =25.0,

%,=0, =0, ¥,=0, %,=0.003, %;=0,and %,=0.

3 RESULTS

First, we will describe the practical procedure for parameter
optimization in the kinetic model for HIV proteinase, and
then we will evaluate the optimized parameters by the
goodness of fit to the observed data.

3.1 Optimization Procedure in HIV inhibition
Proteinase Kinetics Model

To perform the numerical simulation (Part 1), K, and K,
are defined as the five unknown parameters and the five
given  parameters, and the nine  variables

X = {x;,X,,...%y} are allocated to [P], [E], [S], [ES], [M],

[EP), [1], [E1], and [EJ)]. Then we set the start value K©

and the initial value X© . The start values for ten
parameters and the initial values for nine variables are cited
from the previous study [3] (see the legend in Figure 2).
Also, the two initial values, E;y;, and S, are changed within
a limited range with reference to the previous studies [16, 3]:

31 discrete values for %\ ([E]=0.00350, 0.00355, ...,

0.00500) and 9 values for %\ ([S]=24.0,24.5, ..., 28.0).

The focusing variables Y (Part2) are simply obtained by
the symbolic computation with QE from the relationship
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between X and K, in the model. In the inequality
v{X,K)At+x,20, the elimination of Ar by QE outputs five
inequalities including five parameters: 100*[E]*[/] — ks, *[£1]
— k*[EN > 0, 100*[E]*[]] ~ ks,*[El] > 0, 100%[E]*[P] -
ko*[EP] — k*[ES] < 0, 100*[E]*[P] — k*[EP] > 0, and
100*[ET*[S] — k*[ES] — K*[ES] > 0. Among the seven
variables in the above five inequalities, [P] is included in
the objective function, and [S] is a large value relative to the
other variables in the reaction molecules. Except for the last
three inequalities including {P] and [S], only [E]] appears in
the terms related to the unknown parameters in the first two
inequalities. Thus, the focusing variables Y are defined as
[P], [S], and [E]] in the present model. In addition, the
conservation laws in the present model are obtained by
Gepasi [5], a tool for estimating the kinetic flux in a given
model, as follows: h(X)=[SH[ESH{PIH[EP]-S;=0 and
h(X)=[M+2[E}-2[S]-2[ P1+2[EN+2[ EJI-(2Einis - 2Si0ie)=0.

The computation of offser by QE (Part 3) is realized by
eliminating all of the variables by QE, except for offset in

Fofrer- Then we obtain p(offser), depending on )'E,(') , and the

values of six variables and five parameters, as the
following inequalities: p(offsef)= c,+coffset >0 and
cstcyoffset<0, where ¢, ¢,, ¢; and ¢, are constants. The
constants in the above equations are estimated in each
optimization,

Using I of Y and the offset obtained above, we can
estimate e, and K; by QE (Part 4). Note that 279 sets of
e and K, are obtained by the corresponding sets of K
and S Since the fitting of simulated data strongly
depends on the initial values, we further simulate
numerically iy, and S;,;, within the above ranges of £, and
Sinit; by a standard technique of the bisection method, £,
and S, for each set of ¢,, and K, are estimated to
minimize the SSq that is calculated for 300 values of [P]
(Part 5). Finally, we obtain a set of e,,, K, Eii; and Si;;, by
selecting a minimum SSg among the 279 SSg’s.

To judge whether the loop in Figure 1 terminates or not
(Part 6), the minimum of SSg’s is compared with the
threshold 6. In the present study, the threshold is set to 0.01
to attain the same magnitude as that in the previous study
[3]. If the SSq is smaller than 6, then we terminate the
optimization process. If the SSq is larger than 6, then we

start the loop by substituting 279 sets of K, into K@ with

the same initial value sets of ¥ ([Ei.]) and %{” ([Siic])-

Although the number of starting values K increases as
279" with the n-th iteration, the restriction of the parameter
and the variable spaces prevents multiple iterations. Indeed,
only one or two iterations were sufficient to attain the
threshold in the present model.

a b
0.8 0.8
& R
o F 0 '
0.3 ¢ 0.3 d
=| =
0 ;i . 0
0 4000 0O t 4000
e f '
0.8 0.8
x| <
0 0 :
'} t 4000, 0 t 4000

Figure 3: Fitting to observed data with optimized
parameters. The amount of product [P] is multiplied by a
coefficient (0.024), according to [3]. The experimental data
are denoted by the jagged curve. The simulated curves are
denoted by the solid curves (finally optimized) and if the
loop iterates twice, by the broken curves (first optimized): a,
1=336; b, 1=984; c, =1848; d, =336 and 984; e, =336 and
1848; f, =984 and 1848.

time Iteration kx ks ke ksz ke SSq Eii Sinit offset
336 1 2502 9776 1306 0.103 00969  0.00962  0.00495 275  -0.028591
984 1 1555 9982 1127 0.102 0.0980  0.00825 0.00470 280  -0.040591
1848 ; 4058 9.990 1211 0.102 0.0983  0.06380 000385 280  -0.040591
1345 9817 1128 0.110 0.0900  0.00963  0.00460 280  -0.040591
336,984 1 2259 9970 1239 1759 1759 0.00856 000490 275  -0.028591
336, 1848 1 1919 9980 1304 4991 4991 0.00666  0.00475 275  -0.028591
984, 1848 ; 996 9990 1254 1000 1000 0.03334 000430 275  -0.028591
2116 9719 1140 0.010 LOOE+08  0.00659  0.00495 270  -0.016591
Mendes & Kell - 2011 7352 1171 131E+04 3.00E+04  0.00513  0.00547 2679  -0.008962
Kuzmic - 1797 946 1117 0.0831 0.1224 - 0.00387  24.63 -0.01

Table 1: Goodness of fit with optimized parameters by symbolic-numeric method.
For reference, the values related to the present optimization are also cited from previous studies [16, 3].
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3.2 Fitting to Observed Data with the Optimized
Parameters

The optimized parameters with the six sets of observed

data are listed in Table 1, together with the iteration number,
the goodness of fit measured by SSg, the initial values of
E.i. and S,;, and the offset. In addition, the fittings of
simulated values to the observed data in six cases are
described in Figure 3.
One of the remarkable features of the present fitting is that
only one or two points of the observed data are sufficient to
fit 300 data points with an SSq value of less than 0.01. The
data point for the optimization is randomly chosen from 300
points of data, and all fittings attain the threshold by one or
two iterations of the loop. In two of the six cases, two
rounds of iterations were required, but the first fitting in
each case agreed well with the observed data. This is partly
because QE powerfully restricts the possible ranges of the
parameters and the variables, and partly because the present
model is simpler than that expected from the complex
kinetics of ten parameters and nine variables. These points
will be discussed in the following section.

504 2000 D
¢!
[+ ]
g b
i
% k22. 500 % 500
' ! . K22
1.C 1 d
g | ¢
¢ ]
% S0 ‘:l %o
k22 k22
2000, & 1 f
™ - o™
s ]
. i
aﬁ P ) 0% — %0
- k3
1.3 1 h
g g
R {
0l 0
[+ K3 50 0. k42 2000
1.1 1)
g £
. b :
0 0
0 k42 2000 k52

Figure 4: Relationships between the five optimized
parameters. The parameter ranges were estimated by
the given values at =984. The open circles indicated
by arrows are the optimized parameter values at =984.

Another feature is that the values of the parameters agree
well with those in the previous studies [16, 3]. In particular,
the highlighted parameters in this model, the inhibitor
binding constant (ks,) and the deactivation rate constant (k),
are about 0.10 and 0.097 in three of the six cases, which are
similar values to the constants in one previous study {16]. In
contrast, the constants in the three remaining cases are
enormously large, except for ks, at =984 and 1848, which
are also similar to the magnitude of the rate obtained in the
other previous study [3]. In comparison with both cases, the
value in the latter case is unreasonably large for the analysis
to be acceptable. Thus, the large dissociation and
deactivation rate constants suggest that the potency of the
inhibitor is overestimated in terms of the inhibitor reaction.
Two problems in the present optimization remain: one is the
choice of the observed data for the simulation, and the other
is the confidence intervals for the parameters. As for the
data choice, the data showing a flat slope in the kinetic
curve seem intuitively inadequate for the simulation. Indeed,
by using the data of more than #2500 in Figure 3, QE
frequently outputs ‘false’; this means no parameter and
variable spaces for the initial conditions in F’. Any data,
except for those in the steady states, may possibly output
‘true’ for the optimization by QE. As for the confidence
intervals for the parameters, we will discuss them in terms
of the parameters space in the following section.

4 DISCUSSION

4.1 Elucidation of Parameter Space by QE

One of the merits of the present method is that some
relationships between the parameters in the optimization
process can be easily estimated by QE. By utilizing this
merit, we can further elucidate the optimization process in
the present model.

4.1.1 Relationship between parameters by QE

The relationship between the parameters can be easily
estimated by QE. Indeed, the parameter relationship in
arbitrary ranges of variables is obtained by only the
exclusion of the object function in F’, and is useful to
elucidate visually the parameter optimization by QE in
terms of the confidence intervals of the optimized
parameters.

Figure 4 shows the relationships between five optimized
parameters. Given E; and S, the F’ obtained by
excluding the object function consists of five known and
five unknown parameters and three focusing and six
remaining variables. In £, the three focusing variables and
three of the five unknown parameters can be eliminated by
QE, given numerical values at =984 for six known
variables, and then we can obtain the relationship between
the remaining pair of parameters (a quantifier-free formula
for the parameters).

One of the striking features of the elimination by QE is
that the parameter spaces are highly restricted in all
parameter pairs. The parameter space of each pair emerges
in a very narrow range between two boundaries, which is a
visual representation of the uncertainty of the parameters.
For example, the narrow range for the parameter space
between ky; and k; is obtained with the following equations:
155.49657522<k,,<155.49657525 and 1127.2733904<k,,<
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1127.2733905. Furthermore, the total parameter ranges are
shown visually in the restricted ranges; the maximum
ranges of the parameter pairs are 0<k,;<411 and 0<k,;,<1813,
and the dissociation constant of [EP] (k4,) varies in a wider
range than that of [ES] (k2,).

As seen in the figure, the relationships between the two
parameters are divided into independent and dependent
relationships. The parameter range with a slope indicates
that the two parameters change mutually, and are dependent
on each other, and the range with no slope indicates that the
parameters are independent of each other. Only the
relationship between k,, and %4, (b in Figure 4) is dependent,
and the remaining relationships are independent. Thus, the
present method reveals the mutual dependency of the
parameters with their feasible ranges.

4.2 Computational Performance

The present analyses were performed on a PC with a
Pentium XEON 3.2 GHz CPU and 4GB of memory, using
the WINDOWS operating system. The computational time
was about 4.1 minutes for the total optimization of the first
loop, and was about 19.5 hours for the second loop.

4.3 Conclusions

The present study is the first application of QE to the
parameter optimization problem in conjunction with a
numerical simulation. Our symbolic-numeric method by QE
shows the same magnitude of goodness of fit as the
previous numerical optimization. Furthermore, the present
method has the distinct potential to elucidate the
relationships between the parameters and the variables in
the kinetic model. Thus, our method provides a new
direction for the analysis of kinetic models in the field of
computational biology.
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