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ABSTRACT: Among non-synonymous SNPs that cause
amino acid change in the protein product, the selection of
disease-causing SNPs has been of great interest. We present
the comparison between the evolutionary (SIFT score) and
structural information (binding pocket) to show that the
incorporation between them provides an advantage of
sorting disease-causing SNPs from normal SNPs. To set up
the procedure, we apply the machine learning method to the
test data set from the laboratory experiments.

1 INTRODUCION

Human genetic variation is represented by single nucleotide
polymorphism (SNP) and many of them are known as the
most common type for inherited disease susceptibility in
human. However their direct influences to phenotypes are
still beneath the full wunderstanding. Especially,
non-synonymous SNPs (nsSNP) that cause amino acid
change in the protein product are of great interest because it
provides the structural and evolutional implications to the
protein function and infers the connection to the disease
phenotype. Much effort has been devoted to discover such
relation based on both protein sequence and structural
information.

The algorithms that rely solely on sequence for prediction
have been useful tool to determine the phenotypic variation.
The hypothesis that the amino acids conserved in the
protein homologous family are functionally important and
their change leads to deleterious in protein function is
presumed. SIFT(Sorting Intolerant From Tolerant)[1]
method have demonstrated the use of multiple sequence
alignment to identify conserved amino acid site that may be
crucial for protein function. SIFT used PSI-BLAST to
search against the protein database for homologous
sequences and construct a multiple sequence alignment to
calculate a position-specific scoring matrix (PSSM). From
each matrix entry of probabilities, the phylogenetic entropy
is estimated as a balanced average by adding the Dirichlet
pseudocounts.

Many other groups have assessed the effect of SNPs in
globular protein on the basis of their location in the protein
tertiary structure both in PDB and by protein homology
modeling [2-5]. Among them, Wang and Moult [2]
showed that the most part of " disease-causing nsSNP
predominantly affects the stability of protein tertiary
structure. Also, Sanders and Baker [3] evaluated the
structural and evolutionary contributions to deleterious
mutation. They fount that a hybrid feature of a

solvent-accessibility term and SIFT score obtained the most
accurate predictions for deleterious mutation. Stitziel et al.
[4] showed that the majority of disease-causing nsSNPs
from OMIM mapped to potential surface pocket or cavity
predicted by AlphaShape algorithm that employs Voronoi
diagram and Delaunay tessellation. However, despite of
valuable assessment by protein tertiary structure, the lack of
protein structure in PDB and inaccuracies of side-chain by
protein homology modeling, the accurate verification will
remain under future consideration, and therefore it is
advisable to use structural information as an assistant to
evolutionary analysis. So, by incorporating the suitable
structural information with SIFT score, improving the
predictive power to determine the deleterious nsSNPs is a
main purpose of the present paper.

2 RESULT AND DISCUSSION

Our method was designed to incorporate both the
evolutionary and structural information. So, the goal of this
work is to build these methods to optimize the predictive
power to determine deleterious nsSNP. Another reason to
be addressed for this study is to build the automated system
to predict the importance of specific residue site for a
SNP-related experiment. The experimentalist can focus on
the specific important region by this kind of works and,
therefore, they can reduce their time and expense.

Total 334 SNPs from 75 OMIM entries were collected to be
analyzed for this study. Those protein chains have almost
perfect homologous structures at Protein Database (PDB).
The position specific scoring matrix (PSSM) for those
protein chains was calculated against the database of the
non-redundant protein sequence (NR database) provided
from National Center for Biotechnology Information. As
expected, the entropy values for many disease-causing
SNPs from OMIM are distributed at the lower level of the
entropy. It is easily understood by considering the fact that
the residue site for the diseasing-causing SNPs is
evolutionally well conserved, that is to say, low entropy.
Figure 1(a) shows clearly this theoretical perspective. But in
case of Figure 1(b), there are several SNPs that have
relatively higher value of entropy. For example, the residue
positions for H101 and R192 score much higher than that of
other sites. Note that SIFT scores for these SNPs are
classified as “tolerant”. One reason for this kind of error is
that the number of homologous sequences in protein
subfamily to be used for calculation of PSSM is not enough
to average. This low homologous sequence issue has been
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considered as a weak point of SIFT method. But it will be
solved as the database content for those sequences expands.
Anther reason can be thought as the fact that those site are
not evolutionary conserved but structurally important. So, it
is very natural to think the structural information as an
assistant of SIFT score.
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Figure 1 The plot of phylogenetic entropies for (a) OMIM #
259730 (NP_000058) and (b) #600415 (NP_000361). The
triangle shows the site for diseasing-causing SNPs.

Actually, in case of Figure 1(b), the homologous subfamily
used for calculation is 37 sequences from non-redundant
database. So, it is the case for requiring the structural
information. We prepare the sequences from PDB to align
the protein sequence. :
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Figure 2 The comparison between the phylogenetic entropy and
the location of binding pocket. The light gray regions of lowest
bar are corresponds to the residue site which involves the
pocket geometry predicted by AlphaShape theory.

Figure 2 shows the comparison between the phylogenetic
entropy and the location of binding pocket for OMIM #
600415 used in Figure 1(b). Interestingly, it is clearly
shown that two diseasing-causing SNPs are located at the
binding pocket.

What we focused on next is to determine the deleterious
SNPs from non-synonymous SNPs by incorporating both
evolutionary and structural information. Mathematically, it
will be a classification problem if there existexperimentally
-confirmed data set. Here we used the data set from the
laboratory experiments (Table 3) compiled by Ng and
Henikoff [1] under courtesy of Dr. Ng. So, the general
classification methods including Baysian or Support Vector
Machine could be applied. Note that there have been many
works on this topic, but the exact solution is still under
beneath the full understanding. Next step of the data
processing is to select the proper features(attributes) for the

training the sample data and classifying the test data set.
Here, we selected the essential features from generally
assumed features (Table 2) by individually measuring
information gain with respect to the class by WEKA
program [6] and confirmed the selected essential features by
the causality rule of Baysian Network.

Figure 3 Causality relation among the strongly contributed
features.

Table 2 lists the total features used to select the essential
features. The mutation type indicate the mutated protein
structure after the site-directed mutagenesis on SNP residue,
while the wild type means the original protein structure
before the mutagenesis. Also, the features listed on a table
are basically absolute values of the difference between wild
and mutation type.

Figure 3 indicates the causality relation over the essential
features. Three features, changes in SIFT score, burial
volume, and surface area, influence the SNP type directly,
while a change in solvent accessibility indirectly.
Interestingly, there is a causality relation between solvent
accessibility and SIFT score. Also, we have to note that the
suggested essential features are not complete features for
classification because these were derived from the
laboratory experiments.

With these features, we apply the classification method of
Support Vector Machine on a data set of Lacl and
Lysozyme. Note that although the linear SVM model was
used to predict the other methods (Gaussian SVM model)
produced the similar result. First, we predict the deleterious
SNPs of Lysozyme data set with a training data set from
Lacl. And then, we apply in opposite data set. Predicting
Lysozyme data set ranks very high true positive rate while
Lacl is confined around 6-70%. This is mainly because the
number of deleterious and tolerant SNPs in Lysozyme
training data set is not equally balanced.

. Data set - -
- Deleterious  Tolerant
otmn T B
Lacl Lysozvme 155/175 1232/1376
ysozym 88.6% 89.5%
Lysozyme Lacl 778/1165 1648/2267
yomm 66.8% 72.7%

Table 1 Prediction of deleterious and tolerant SNPs in
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laboratory experiments data set. Lacl and Lysozyme data were
used as training and testing data respectively.

The constructed procedure can be applied to classify SNPs
from OMIM. But we have to be careful when interpreting
the above result. The final goal of this study is to elucidate
the method to classify the disease-causing SNPs from
non-synonymous SNPs of Human. But, it is still not clear
whether the deleterious SNPs will be disease-causing or not.
Note that according to the result of Wang and Moult [2]
about 80% of SNPs from HGMD database are related with
the stability of protein structure.

The lack of protein structure in PDB and inaccuracies of
side-chain by protein homology modeling, the accurate
verification will remain under future consideration, and
therefore it is advisable to use structural information as an
assistant to evolutionary analysis.

3 METHOD

We suggest that the location of binding pocket incorporated
with SIFT score plays a crucial role in verifying the
importance of the SNP site. First, we construct the
prediction system to estimate the importance of SNP site.
Main contribution for the importance is the phylogenetic
entropy and the location of binding pocket. Phylogenetic
entropy is the information entropy obtained by summing up
the probabilities at each residue site on position specific
scoring matrix by SIFT algorithm. So, it can be defined as
follows;

P.=-Y p.log(p,,). M)

where the summation was done over all amino-acids a at
specific site c. And p,, is a probability at each reisidue site
and represented as a SIFT score.

The potential surface pocket or cavity are predicted by
AlphaShape algorithm that employs Voronoi diagram and
Delaunay tessellation. The FOTRAN program “pocket”
does all computation step. And we determine a residue site
as a pocket site when the total exposed volume to the pocket
for all residue atom is greater than 70%.

To calibrate and verify this procedure, we prepare
disease-causing nsSNPs from OMIM entry having PDB
structures. Total 334 SNPs from 75 OMIM entries were
appropriated to this study. We collected these entries into
database and made a software to analyze an evolutionary
contribution and structural stability by the discase-causing
SNPs. Also, additionally, the software provides the
annotation information from SWISS-PROT database,
secondary structure calculated by Jnet algorithm, and
hydropathy by Kyte-Doolittle algorithm. The program was
mainly written by PERL with a library of BioPerl. Although
those entries are very helpful to describe the importance of
specific residue site, we will focus on the phylogenetic
entropy and the location of pocket shape in this paper.
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Figure 4 Screenshot of the comparison program for the SNP
H107Y of OMIM # 259730(NP_000058).

More nsSNPs are determined as deleterious mutations that
have high phylogenetic entropy values or are located near
the binding pocket than as reported in Ref. [1, 4].

Interestingly, deleterious SNP sites with the high entropy at
the binding pocket have been discovered in many cases.
We found that many of those sites correspond to the site
with the insufficient evolutionary information such as the
case for profiling with few homologous sequences. This
result enforces us to believe that incorporating prediction of
binding pocket is crucial for insufficient evolutionary
information.

Then, we constructed the automated protocol by direct in
silico mutagenesis to confirm the incorporating power of
evolutionary and structural information when determining
whether an amino acid substitution in a protein will affect
protein function. Structural environment features were
mainly derived from the properties of binding pocket and
other structural rules described above for the 3D
homologous structure.

Type Properties

Basic charge, hydrophobicity, polarity
Exposed surface area
Exposed pocket area
Burial volume

trical

Geometric Solvent accessibility
Total number of pocket
Total number of cavity
Loss of hydrogen bond

Chemical Loss of salt bridge
Loss of disulfide bond

Evolutionary | SIFT score

Table 2 Selected features to be used to determine the
deleterious SNPs from non-synonymous SNPs.

Table 2 lists the features tested in this work. To get the
basic and chemical type of features, we applied the rules by
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Wang and Moult [2] . The geometrical type of features are
drived by applying AlphaShape theory. Solvent
accessibility was calculated through DSSP program [7] .

Mutation types from the original protein structures are
prepared by the site-directed mutagenesis and generation of
side-chain by SCWRL program. Then, we measure the
differences of each structural feature between wild and
mutation type.

Among those features, crucial ones are carefully selected by
evaluating the features individually by measuring
information gain with respect to the class and ranking the
evaluated features by WEKA program [6] . So, we select
top five features shown in Figure 3 which shows the
causality relation derived from Bayesian network approach
and confirms the relation between the features.

Deleterious Tolerant
Lacl 1165 2267
Lysozyme 175 1376

Table 3 Data sets from laboratory experiment compiled by Ng
and Henikoff [1] .

We applied machine learning methods, support vector
machine (SVM), to compare the predictive power as SIFT
algorithm or other structure-based algorithms. We used a
training and testing set (Table 3 Data sets from laboratory
experiment compiled by Ng and Henikoff [1] .) based on the
laboratory mutation experiments (Lacl and lysozyme) [1]
compiled by P. Ng.
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