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ABSTRACT: In the multidimensional protein identification
technology of high-throughput proteomics, we use
one-dimensional gel electrophoresis and after the separation
by two-dimensional liquid chromatography, the sample is
analyzed by tandem mass spectrometry. In this study, we
have analyzed the Pseudomonas Putida KT2440 proteome.
For the protein identification, the protein database was
combined with its reversed sequence database. From the
peptide selection whose error rate is less than 1%, the
SEQUEST database search for the tandem mass spectral
data identified 2,045 proteins. For each protein, we
compared the molecular weight calibrated from 1D-gel band
position with the theoretical molecular weight computed
from the amino acid sequence, by defining a variable
MW,,,.. Since the bacterial proteome is simpler than human
proteome considering the complexity and modifications, the
proteome analysis result for the Pseudomonas Putida
KT2440 could suggest a guideline to build the protocol to
analyze human proteome data.

1 INTRODUCTION

Proteome analysis using tandem mass spectrometry is the
technique to produce high-throughput protein data. Before
measuring the molecular weight with tandem mass
spectrometer, the sample is digested and fractionated to
separate it into the fractions each of which contains only
several peptides. Usually, tandem mass spectrum keeps the
information on the fragment ions of one peptide. A tandem
mass spectrum offers the most possible peptide sequence
through the protein database search, whose theoretical mass
spectrum peaks match well with the experimental peaks to
win the highest score. For lower quality mass spectra, the
peak match is poor and the match scores are low, while high
quality spectra get the high scores. For the marginal match
scores, we cannot estimate how well the identified peptide
sequence is confident and it is difficult to distinguish a

marginal match score from true or false peptide assignments.

The database search softwares such as SEQUEST [1],
Mascot [2] use different scoring algorithms and they
suggest the threshold match score over which the search
result seems to be true. Actually the threshold score depends
on a variety of experimental environments and it should be
estimated at each experiment, respectively. The decoy
approach of Elias er al. [3] using reversed sequence
database enables us to determine the dynamic threshold
score to satisfy our error rate requirement.

When we identify proteins by the database search, the
protein molecular weight can be another criterion to make a

decision that the identification result is true. When we have
1D-gel or 2D-gel image, the protein marker positions are
the reference points to calibrate the experimental molecular
weight of proteins. But the poor reproducibility of gel image
and many modifications of proteins become the obstacle
to making the molecular weight information as one of the
criterions to estimate true assignments. Here we have
adopted a variable MW, [4] that represents the correlation
between the experimental molecular weight interpolated
from the protein marker positions of the gel image and the
protein molecular weight computed from the amino acid
sequence. For the Pseudomonas putida KT2440, the
proteins that acquired high match scores were shown to
have the MW_,,, values around 1.

Pseudomonas putida KT2440 is one of the bacteria, that
adjust itself very well to diverse environments. It is
metabolically versatile. Especially, this bacterium has been
attractive because of its biodegradability for the various
aromatic compounds. [5] In addition to this biological
worth, we have focused on the fact that the proteomes of
such bacteria are simpler than human proteome in protein
characteristics. By applying the decoy approach at the
database search with tandem mass spectral data and
computing MW,,,’s after the protein identification, we
could find the MW, distribution of confident proteins.
This result became a criterion to grouping human proteome
according to MW,,, values. By comparing the MW,
distributions for different samples, we could characterize
their proteomes.

2 MATERIAL AND METHODS

2.1 Sample preparation

Pseudomonas putida KT2440 was purchased from ATCC
(www.atcc.org). P. putida KT2440 was pre-cultured in SOmM
potassium phosphate buffer (pH 6.25) containing 3.4 mM
MgSO,, 0.3 mM FeSO,, 0.2 mM CaCOs;, 10 mM NH,Cl and 10
mM sodium succinate (KT2440-S) and then transferred into
same fresh media or 5 mM benzoate (KT2440-B) media. The
cultured bacteria were harvested as soon as growth reached the
late exponential phase and then were stored at -80°C until 2-DE
analysis.

Harvested cells were suspended in 20 mM Tris-HCI buffer
(pH 8.0) and disrupted by a French pressure cell (SLM
AMINCO, Urbana, IL, USA) at 20,000 Ib/in®. The crude
extracts were separated by centrifugation at 15,000 x g for 45
min. The supernatant (buffer-soluble fraction) was collected
and used for SDS gel electrophoresis.

-91 -



2.2 Tandem Mass Spectrometer Analysis

All 42 samples were analyzed using multidimensional
protein identification technology.[6-9] The digested peptide
mixtures from different 1D gel bands were loaded
separately onto a micro capillary column packed with C18
and SCX cation exchange materials. All spectra were
produced from LTQ/MS/MS experiment using a
Thermo-Finnigan (U.S.A.) LTQ ion trap mass spectrometer.

2.3 Database Search

The database search for the tandem mass spectral data was
performed by SEQUEST  whose  version is
Turbo-SEQUEST v. 3.1 SRI (ThermoFinnigan, U.S.A.).
Keratin peptide assignments were eliminated in total
peptide assignments. For the database search, the P. putida
protein database (PPDB) was downloaded from the
National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/). The protein database
includes 12,463 protein sequences. To assess the false
assignment distribution, the amino acid sequences of PPDB
were completely reversed to create a reversed sequence
database (RSDB).[10] While PPDB consists of the
sequences of the known bacterial ORFs, RSDB is a
database of retro-proteins that don’t exist in Pseudomonas
Putida KT2440 and can be hardly synthesized. If a peptide
sequence from RSDB is found by the database search, we
conclude that this identification result will not be correct.

2.4 Molecular Weight Analysis

The 1DE analysis of P. Putida KT2440 was performed with
the positions of eight standard protein markers. By
referring to the marker positions, we measured the
molecular weight range of each band. From a linear
regression analysis using the marker protein band positions,
we obtained approximately the relationship between the
protein molecular weight and band position. In general,
the electrophoretic mobility (R;) of SDS-protein complexes
in gels is proportional to the logarithmic value of the
polypeptide molecular weight, MW.,, in the region except
the end of the gel. The molecular weight of a polypeptide
can be estimated by comparing its mobility with those of the
standards. For the P. Putida KT2440 sample, the eight
marker positions provided a formula for the electrophoretic
mobility.

Rr = =040 x log MW co+ 4.74

As a variable to measure differences between the
experimental molecular weight MW,,, calibrated from the
electrophoretic mobility and the calculated protein
molecular weight MW, computed from the protein
sequence, we have introduced a variable MW, of
molecular weight correlation. It is defined as

lOgMW exp
10gMWtaI

M’/Vr:arr =

2.5 False Positive Analysis

After SEQUEST, we get the .out files where peptide
sequences and their match scores are listed. Figure 1 is the
plot of the peptide search result that is the graph of X,
values versus MW, values. X,, is the match score of
SEQUEST. At Figure 1(a) that is the score distribution of
peptides found from the PPDB, the peptides that won high
scores appeared near MW,,,, = 1, differently from the Figure
1(b), the distribution from the RSDB.

(a) (b)

Figure 1 Match score distributions for PPDB and RSDB. (a) Xcorr vs.
MWecorr for peptides found from PPDB (b) Xcorr vs. MWcorr for
peptides found from RSDB. The red points are in the MWcorr region
where high match scores are located at PPDB search result.

This figure allows us to assure two facts. One is that the
lower X, scores in the peptide identification from PPDB
distributes in the same shape as those from RSDB. The
other is that the true assignments of Figure 1(a) are
concentrated on the region of high X, scores around
MW, = 1 and the distribution of RSDB is the same with
the false assignment distribution of PPDB, which is the
point mentioned at Elias et al.[3]. Therefore we can regard
the peptide distribution of RSDB as the false assignment
distribution of PPDB. Then, the true assignment distribution
of PPDB is computed by subtracting the false assignments
from the whole peptide distribution of PPDB.

After extracting the true and false distributions, we could
compute the sensitivity S(F) and the reliability R(F) for the
search result, which are defined as

S(F)= ?dF'Pm(F')/ ]-dF'P;me(F')
F -

R(F)=1- [TdF'Pﬁ,b,(F')/mde' Poue(F")]
F F

Here, Py (F) is the peptide distribution function of true
assignment for the match score F, and Ppy (F) is the
function of the false assignment.

By sclecting the threshold score as the value whose
reliability is 99%, we could get a set of confident peptides
whose reliability is higher than 99%.

2.6 Proteome characterization

The highly confident peptide list filtered by the reversed
sequence database was used to identify proteins by the
program DTASelect. When we plot the MW,,,, distribution,
we can see how many proteins are found out of the region
where the experimental molecular weight is similar to the
theoretical molecular weight. Since bacterial proteome is
much simpler than human proteome, we expected that most
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of the proteins would belong to MW,,, ~1 region and the
range where the most proteins are located can be interpreted
as the MW, error range, that is, the experimental
molecular weight error range. Because we have calibrated
the molecular weight by using the marker protein positions
in 1D-gel bands, there should be the difference from the
exact molecular weight. The MW,,, distribution of this
bacteria would suggest the error range for MW,,, . With
such a proteome analysis method, we could find the MIW,,,,
where rather simple proteins belong. By applying this
information to the human proteome containing many
variations in protein status, we have characterized human
proteome.

3 RESULTS

From the X, distribution, we got the true assignment
distribution for PPDB. Figure 2(a) shows the peptide
number distribution identified for each database. Figure 2(b)
is the true and false assignment distribution of PPDB that is
obtained indirectly from the peptide distribution of RSDB.

(a) (®)
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Figure 2 Peptide distribution for the cross-correlation value X.,,. (a)
The solid line is the distribution for the peptides identified from PPDB.
The dashed line is the peptide distribution from RSDB. (b) The dashed
line is the peptide distribution from RSDB and reinterpreted as the false
assignment distribution of PPDB. The solid line is the true assignment
distribution of PPDB that was obtained by subtracting the distribution
of RSDB from the distribution of PPDB.

This reversed sequence based analysis can be applied to any
match scores for the database search using tandem mass
spectral data. For a better discrimination of true and false
assignement, we have tried another score F that was
introduced at Keller et al. [11].
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Figure 3 Peptide distribution for the discriminant score F. (a) The
solid line is the distribution for the peptides identified from PPDB. The
dashed line is the peptide distribution from RSDB. (b) The solid line
and dashed line are the true assignment and the false assignment
distribution of PPDB, respectively.

Figure 3 shows the distribution for the discriminant score F.
Comparing it with Figure 2, F looks to separate true

peptides from false ones better than X.,,. In order to get
more confident peptide identification, the true distribution
should be separated from the false distribution as well as
possible. Therefore from now on we proceed the further
analysis with the score F.

In Figure 4, the protein distributions for PPDB are shown
for several reliability values, with varying MW, values.
By increasing the reliability, the tails of the curve far from
MW,,,, = 1 disappear, while the curve around MW, = 1
changes little. It is because higher score peptides are
rarely found far from MW, = 1.
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Figure 4 MW, distribution for threshold scores according to the
different reliability values.

For further analysis of the protein molecular weight, we
selected peptides with a reliability R(F) > 99% and
collected distinct peptide sequences by discarding the
redundant peptide sequences. As a result, we obtained
60,862 peptides with high confidence for protein
identification. Using the protein identification software
DTASelect, these peptides finally identified 2,045 proteins.

When we identify proteins from the peptide list, some
proteins contain many peptides and other proteins are
identified by only a single peptide. Moreover, oné peptide
sequence can sometimes be found in several proteins. In
that case, such identifications are much less confident than
those obtained for multiple peptides [31]. By defining the
weight score W,(s) of a peptide sequence s as a fractional
number of

Wo(s) =1/n(s)
PHS(G) =Y Wi(s)

seG

we can extend the number of peptide hits of a protein to a
new hit score PHS(G). Here n(s) is the number of proteins
that contain the tryptic peptide sequence s, the sum of the
fractional numbers of peptides that are used for the
identification of protein G. As like the usual filtering
methods discarding single-peptide protein identification, we
abandoned proteins whose PHS(G) was not greater than 1.
For the P. putida KT2440 sample, these high-confidence
proteins were plotted at Figure 5. Figure 5 is the graph of
the number of proteins vs. MW,,,, that shows a very sharp
peak near MW,,,, = 1. The center of the peak is not located
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exactly at the point where MW, = 1. This is caused by
the error that occurred when we adopted the linear
regression method for the calibration of MW, from the
eight marker proteins. If we use the higher order polynomial
function at MW,,, definition, this peak center would be
shifted to MW _,,, = 1.
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Figure 5 MW, distribution for proteins with PHS(G) larger than 1.
The dashed line is the curve fitted to the Gaussian function.

When we interpolate the MW, distribution curve of
Figure 5 into a Gaussian function, we find that the region
0.97 < MW,,,, < 1.05 includes 99.7% of the proteins. Thus,
we can define groups G1, G2, and G3 according to their
MW,,,, values as

Gl: 1.05 S MW oy
G2: 0.97 S MW 0y < 1.05
G3: MW, <0.97

Group G2 has a more narrow range than that assigned by
Kim er al. [4], who selected a 5% error range for MW,
approximately, based on the previous experimental reports.
Group G1 is the group in which the theoretical molecular
weight of the predicted protein is smaller than the
experimental molecular weight. In group G3, the
theoretical molecular weight of the protein is larger than the
experimental value. Groups G1 contain highly modified
proteins, proteins consisting of several chains, protein
complexes. G3 is the group of segmented proteins.

Applying the former proteome analysis method to the
human sample, we can divide the MWW, range into three
groups. The distributions are somewhat different from
those of the bacterial proteome. Figure 6 shows the MW,
distribution for the human plasma proteome, filtered by the
criteion of P Putida KT2440 proteome with 99%
reliability.

e i

e

1
MWrory

Number of proteins(1<PHS(G))

Figure 6 the MW, distribution of the human plasma proteome

The distribution of the human plasma proteome is quite
different from that of P putida KT2440. The human
proteins show the distribution more diverse over the MW,
range because of their complex states, which include protein
modifications and cleavages. The proteins in group Gl
have molecular weights that are larger than those computed
from the amino acid sequences in the database.
Glycoproteins, proteins containing disulfide bonds and
protein complexes are classified into group G1. Group G3
contains the complement proteins and precursor proteins.
When the signal peptide is cleaved from the precursor
protein, its molecular weight is much lower than the
computed molecular weight. The diverse distribution of
proteins for MW,,,, denotes a variety of protein statuses and
reflects the fact that many proteins are modified to give
large molecular weight differences.

4 DISCUSSION AND CONCLUSION

The protein list for each group defined as G1, G2 and G3
should provide clues as to the dynamics of the proteins.
Among the G3 proteins, the precursor proteins could be
transferred to group G2 if we knew the signal peptide
cleavage site. The SignalP software can predict with high
accuracy the cleavage sites for precursor proteins. The
expected cleavage sites can be used to generate a new
protein sequence database, in which each precursor protein
has two different protein IDs, one of which represents the
protein without the signal peptide and the other represents
the whole protein. After updating the protein database
with the proteins from which signal peptides are excised, we
can revise the protein molecular weights, and the precursor
proteins in group G3 can be moved to group G2. In this
scenario, group G3 would then contain only the
complement component proteins. Regarding the proteins
in group Gl, proteins with disulfide bonds, such as
immunoglobulins, can have different molecular weights
depending on their connection states. By inserting into the
protein database the possible connections that are related to
the disulfide bonds, the correct theoretical molecular
weights could be calculated, and some of these proteins
could be moved to group G2. These examples show that
updating the protein database with the protein molecular
weights facilitates the evaluation of proteins identified by
proteomics.

Nowadays the protein databases are exploding with the
discovery of new proteins. In order to make database search
more efficient, they build trimmed database including one
representative sequence for one protein. However such
sequence based database is not appropriate for the mass
spectrum analysis. In the peptide identification, it loses the
homologue sequence peptides. Concerning with the intact
profein mass, the trimmed database cannot support the
correct information on the protein molecular weight. For the
proteomics research using mass spectrometry and protein
database, we need to design a new structured architecture of
protein database.
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