# 벤조다이아제핀 수용체 이상과 불안장애

(GABA<sub>A</sub>-Benzodiazepine Receptor)

이 상 열

원광대학교 의과대학 신경정신과학교실

#### History of GABA<sub>A</sub>-Benzodiazepine Receptor

- Mid-1950s; clinical use of the first benzodiazepine
- 1974; highly specific potentiation of GABA by BZ (Roche)
- 1977; BZ interacted with specific binding site in the CNS, which turned out to be an integral part of the GABA<sub>A</sub> receptor complex
- 1987; receptor complex was isolated and sequenced
- 1994; visualized by electron microscopy

# GABA<sub>A</sub>-Benzodiazepine receptor complex





by EM (Nayeem et al 1994)

# Schematic representation of the binding sites on the GABAA-benzodiazepine receptor complex GABA site picrotoxin site alcohol site Bz site barbiturate site

# **GABA** and Anxiety

- An imbalance of the GABA and glutamate systems, in addition to other NT systems, has been hypothesized to underlie pathological anxiety
- Attenuation of the GABAnergic system: arousal, anxiety, restlessness, and insomnia
- Favor of GABA: sedation, amnesia, ataxia



Kent et al. Biol Psychiatry 2002;52:1008-1030

## Early Classification of GABA receptors

- GABA<sub>A</sub> receptors; gatekeeper for a chloride channel, allosterically modulated by a potpourri of nearby channel
- GABA<sub>B</sub> receptors; selectively binding to the baclofen not allosterically modulated by benzodiazepines
- Benzodiazepine receptors
- GABA<sub>c</sub> receptor ; insensitive to both bicuculline and baclofen
- Excitatory GABA<sub>A</sub> receptors; GABA can be an excitatory transmitter at certain loci in embryonic and early postnatal life
  - ; tonically stimulated adult hippocampal pyramidal neurons



# Structures of the GABA<sub>A</sub> receptors

Cloning form cDNA libraries or genomically → 19 related GABA<sub>A</sub> receptors



#### **BZ** receptors

- Five BZ receptor subtypes 3 distinct pharmacological profiles
- BZ 1(omega 1) receptor
  - : preferentially located in the cerebellum and contain recognition sites with high affinity both for BZ and for agents with different chemical structures
  - : mediating anxiolgytic action and sedative-hypnotic action
- BZ 2(omega 2) receptor
  - : located predominantly in the spinal cord and striatum
  - : mediating the muscle relaxant action  $\ensuremath{\mathsf{BZ}}$
- BZ 3(omega 3) receptor
  - : peripheral type, abundant in the kidney
  - : unclear in anxiolytic actions

| - 1 | <br> | <br> | <br> |  |
|-----|------|------|------|--|
|     |      |      |      |  |
|     | <br> | <br> | <br> |  |
|     |      |      |      |  |
|     |      |      |      |  |

## **GABA<sub>A</sub>-BZ Receptor Complex**

- BZ-BZ receptor binding → allosetrically changes the receptor complex to increase the efficiency of GABA
  - --> enhance the effectiveness of the GABA (lowering the concentration of GABA required for opening the channel)
  - → safer(brain circuits cannot be inhibited over and above the level that would be achieved by natural GABAergic effects
- Barbiturate, chloral hydrate, ethanol -> directly open the chloride channel(fatal in overdose)

# Agonists, antagonists, inverse agonist





| _ | 82 | _ |
|---|----|---|







|              | <br> |             |
|--------------|------|-------------|
|              |      |             |
| <br>-        | <br> |             |
|              | <br> |             |
|              |      |             |
| <br>-        | <br> |             |
| ·            | <br> | <del></del> |
|              |      |             |
|              |      |             |
|              |      |             |
|              |      |             |
|              |      |             |
| <br><u> </u> | <br> |             |
|              |      |             |
|              |      |             |
| <br>         |      |             |
| <br>         | <br> |             |
|              |      |             |
|              | <br> |             |
| <br>         | <br> |             |







| •        |       |
|----------|-------|
|          |       |
|          |       |
|          |       |
|          | <br>  |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          | <br>  |
|          |       |
|          |       |
|          | <br>· |
|          |       |
| <u> </u> |       |
|          |       |
| ·        |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          | <br>  |
|          |       |

#### BZ receptor site: evolutional pressures?

- Necessary to regulate anxiety: brain itself produces an anxiety-reducing compound(endogenous agonist)
  - anxiety and insomnia = deficiency of this compound production
     continual long-term replacement Tx ?
  - a. found in brains of individuals who died long before the first labo.
     synthesis of BZs (Sangameswaran et al 1986)
  - b. endogenous BZ agonists(endozapnes) are found in the rare familial condition, idiopathic recurrent stupor(Tinuper et al 1994), hepatic encephalopathy(Cossar et al 1997)
  - Aspergillus fungi can make a range of BZs and these naturally occurring BZs can also be stored in human brains after being eaten

# To mediate the activities of endogenous inverse agonists

- -> keep brain arousal optimal and if levels fell, sleep could result
- a. ethyl-betacaboline-3-carboxylase(beta-CCE): first compound to promote anxiety by direct action at a receptors in the brain(Braestrup et al 1980)
  - not endogenous, being formed in the extraction process
- b. Tribulin: elevated levels in increased anxiety(PTSD, alcohol withdrawal)(Glover 1998)
  - structure has not been determined

#### No endogenous BZ receptor ligand and that the site may simply be a particular protein conformation that "fine tunes" GABA functions

- $\ensuremath{ o}$  altering maximal efficacy, or the rate of desnsitisation
- a. BZ receptor spectrum is not fixed and that the "set-point" ~ where drug bind, but have no effect- can be moved, perhaps as a result of differential subunit expression



| <br> |
|------|
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |

## Anxiety: BZ receptor abnormality?

- BZ receptor antagonist "flumazenil" as a challenge test and as an imaging ligand
- a. 2 mg of flumazenil( occupy more than half of the receptors in the brain) → provoked panic in most of the patients but was quite innocuous in the control subjects(Nutt et al 1990, Woods 1991, Maddock 1998, Strohle et al 1999)
  - → displacement of an endogenous agonist( only in patients)
  - → set-point of the BZ receptors has moved in the inverse agonist direction, making flumazenil a weak inverse agonist

# **Neuroreceptor Mapping -GABA**

- PET neuroreceptor ligands : [111C] flumazenil
- SPECT neuroreceptor ligands : [123]iomazanil [123]NNC 13-8241



< PET SCAN >
Left: normal brain
Right: Panic disorder

#### **GABA-BZ** receptor and Anxiety

- Panic disorder: reduced GABAA-BZ receptor binding capacity in several brain region
  - frontal lobe(Schlegel et al 1994, Kaschka et al 1995, Kuikka et al 1995)
  - temporal lobe(Schlegel et al 1994, Kaschka et al 1995)
  - hippocampus(Brenner et al 2000)
  - occipital cortex(Goddard et al 2001)
- GAD : reduced binding in the temporal lobe(Tihonnen et al 1997)
- PTSD: reduced binding in the prefrontal cortex(Brenner et al 2000)

|      | <br> |
|------|------|
| <br> |      |
|      |      |
|      |      |
|      |      |
|      |      |

#### **Decreased BZ receptor binding in PTSD**



#### **Magnetic Resonance Spectroscopy**

| Study                       | Diagnosis      | Region     | Finding                                     |
|-----------------------------|----------------|------------|---------------------------------------------|
| Sanacora et al, 1999        | Depression     | occipital  | 52% reduction in GABA                       |
| Behar et al, 1999           | ETOH depen.    | occipital  | 25% reduction                               |
| Hetherington et al,<br>2000 | cocaine abuse  | occipital  | 23% reduction                               |
| Goddard et el, 2001         | panic disorder | occipital  | 22% reduction                               |
| Ke et al, 2001              | cocaine abuse  | prefrontal | 10-20% reduction                            |
| Epperson et al, 2002        | PMDD           | occipital  | reduced GABA during<br>the follicular phase |

#### Conclusion

- BZs work at specific receptor sites on the GABA<sub>A</sub> receptor complex in the brain, and subtypes of these receptors mediate different actions
- Abnormality of BZ receptors may underlie some anxiety disorders
- reduction in GABAA-BZ receptor binding in the cortex in panic disorder, GAD, PTSD
- defective neuroinhibitory processes play a role in the pathophysiology of anxiety disorders
- Drugs targeted at specific receptor subtypes may offer the hope of anxiolytics without unwanted side-effects

|         | <br> |  |
|---------|------|--|
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    | <br> |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         | <br> |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         | <br> |  |
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         | <br> |  |
| <br>· _ |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    | <br> |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
| <br>    | <br> |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |
|         |      |  |