Neurobiology of Anxiety

2005. 5.13

Hallym University Sacred Heart Hospital **Jeong-Ho Seok M.D.**

Contents

- · Definition of anxiety and fear
- · Brain str ct res associated with anxiety
 - The amygdala: anatomy and role
 - The prefrontal cortex
- · Ne rochemical basis of anxiety
- Two types of fear (animal st dy)
 - Conditioned fear
 - Unconditioned fear
- · Concl sion

2

Definition

(on Yahoo web dictionary)

• Anxiety:

A state of apprehension, ncertainty, and <u>fear</u> res lting from the anticipation of <u>a realistic or fantasized threatening event or sit ation</u>, often impairing physical and psychological f nctioning

· Fear:

A feeling of agitation and <u>anxiety</u> ca sed by the presence or imminence of danger

Another definition

(Yahoo Encyclopedia, Columbia university press.)

- Anxiety

 anticipatory tension or vague dread persisting
 in the absence of a specific threat.
 anxiety is generally related to an unconscious threat.
- Physiological symptoms of anxiety increases in pulse rate and blood pressure, accelerated breathing rates, perspiration, muscular tension, dryness of the mouth, and diarrhea
- Fear

 realistic reaction to actual danger

Brain structures related to anxiety

- · The Amygdala
- · Other Mesiotemporal cortical structures
- The sensory thalamus and cortices
- · The orbital and medial prefrontal cortex
- The anterior insular
- The hypothalamus and brainstem nuclei

Amygdala in fear learning

- Rapid response to simple perceptual elements of potentially threatening stimuli
 - : monosynaptic projections from the sensory thalamus to the lateral amygdala
- Longer latency responses to more highly processed information about complex sensory stimuli and environmental contexts
- : Projections from sensory association cortices and mesiotemporal structures to the amygdala

	 	 	
	 	 · · · · ·	

Within amygdaloid complex (13 nuclei in rats)	
Sensory input	
Long-lasting memory traces for lear conditioning	
Basal and central nucleus accessory basal nuclei	
orchestrate the behavioral, autonomic and endocrine responses to threat	

Learning of fear-conditioning

- Amygdala: rapid conditioning of fear response
- Medial temporal lobe : explicit or declarative memories about fear-related event
- Cortex: higher cognitive processing of fear experiences (attentional and mnemonic)

The perirhinal cortex

: conveying information about complex visual stimuli to the amygdala during fear conditioning

Mesiotemporal cotical structures

- The temporopolar cortex
 - : modulating autonomic aspects of emotional responses and processing emotionally provocative visual stimuli

		_			
_	 			_	
_	 		 _		_
			 _		

Prefrontal cortical structures

- The medial and orbital PFC : Modulating anxiety and other emotional behaviors
 - Interpreting the higher order significance of experiential stimuli
 - Modifying behavioral responses based upon competing reward vs. punishment contingencies
 - Predicting social outcomes of behavioral responses to emotional events
- Share extensive reciprocal projections with the amygdala

10

Medial prefrontal cortex

- Include infralimbic cortex and anterior cingulate cortex (pregenual, subgenual)
- Critical roles in attenuating fear responses and extinguishing behavioral responses to fearconditioned stimuli
- · Pregenual ACC activity: related to anxious state
- Pregenual and subgenual ACC: reciprocal anatomical connections with posterior orbital cortex, amygdala, hypothalamus, NA, VTA, periaqueductal gray, raphe, LC and so on.

1

Orbital and anterior insula cortex

- Physiologic activity of these area related to anxious state
- Modulating visceral and behavioral responses ass. with fearful, defensive, and rewarddirected behavior

T			1 ,	
PAS	terior	cinoii	late	cortex
1 00	CLICI	OILLEG	ıuı	COLUC

• Exposure to aversive stimuli of various types activated the retrosplenial cortex and other portions of the post, cingulate cortex

Neurochemical basis of anxiety

- · Monoamine neurotransmitters
 - NE
 - 5-HT
 - Dopamine
- · Peptidergic neurotransmitters
 - CRH
 - Neuropeptide Y
 - Substance P
- · Amino Acid neurotransmitters
 - GABA
 - Glutamate

Noradrenergic systems in anxiety

· Exposure to fear-conditioned stimuli (immobilization stress, foot-shock or tail-pinch)

• Increase NE turnover in the LC, hypothalamus, hippocampus, amygdala and the cerebral cortex and firing activity in the LC

	 _	 - · · · · · · · · · · · · · · · · · · ·
_		

HPA axis and CRH in anxiety

Exposure to acute stress

1

↑ Release of CRH, ACTH and cortisol

Partial resistance to feedback inhibition of elevated cortisol

Rapid downregulation of GR

16

Chronic stress and anxiety

- Adaption or sensitization of glucocorticoid response to chronic stress
- · Factor: poorly understood
- Emotional experiences within critical periods of neurodevelopment (prenatal, early postnatal experiences) exert long-term effects on HPA axis function
 - : adverse experiences long-term hypersensitivity of HPA axis positive early life experiences - beneficial long-term consequences on the adaptive ability to stress or threat

17

Critical period in neural plasticity

 A high degree of plasticity exists in stressresponsive neural systems during the prenatal and early postnatal periods

Regional differences in the regulation of CRH function

• Acute or chronic administration of CORT

CRH mRNA expression
PVN of hypothalamus

Ant. pituitary gland
CE of amygdala, BNST

normal / stress

↓ ↑

↑

↑

 Positive feedback of glucocorticoid on extrahypothalamic CRH function in the amygdala or the BNST (the Bed Nucleus of the stria terminalis)

19

CRH receptor subtypes and anxiety

- CRH1 receptor deficient mice:
 diminished anxiety and stress responses
- CRH2 receptor deficient mice : heightened anxiety response to stress
- · Affinity of CRH is higher for CRH1 than CRH2
- · CRH elicits anxiogenic effects
- CRH1 antagonist (antalarmin) inhibits the behavioral, sympathetic autonomic and neuroendocrine responses to acute social stress in monkeys

2

Other NT in anxiety disorders

- Abnormalities in HPA axis, CRH, GABA receptor function, 5-HT function
 - : inconsistent and inconclusive
- CCK receptor in animal models of anxiety
 - agonist (CCK-4): anxiogenic
 - antagonist : anxiolytic

Signal transduction pathways important for learning and memory of fear

• Fig.6 in Rosen et al, 2004

22

Conditioned vs. Unconditioned Fear

- · Animal studies on anxiety model
 - Pavlovian fear conditioning by pairing lights, tones, contexts and shocks
 - Ecologically, biologically based stimuli and approaches such as exposure to predators and odors from predators

4

Behavioral paradigms

- Fear-potentiated startle and <u>fear-induced freezing</u>: universal fear responses
- Basic paradigms

(Table 1 in Rosen et al, 2004)

distanced Fear	
Abore writing Ferral Conditioning	7
1. Theorements archimencal to testing characters	
2. Mary Statement land of grid and designed	
1. Provides & forward palma & implement trace in the major of	
Classification is to be the same as a 2-december at the constitutions:	
· Fangels and memorals is the assured	
Me authorizan et Pera est a Prestana finha:	
1. There manuse are innumers to review chamber	
2. Me r 1 moures, for sake, from theliferedon (TMT), or	
personal desired	
A. Frestreining traditional time to the action of	
A. Franciscog to a reterration page (1), buyons after expensive chargesing	

Lateral nucleus in the acquisition of	
fear-conditioning	
• Fig. 4 in Rosen et al, 2004	
25	
Conditioned vs. unconditioned fear in	
lesion of central nucleus	
• Fig. 5 in Rosen et al. 2004	
26	
	1
Unconditioned fear and BNST	
• Fendt et al, 2003	
27	

A neural circuit in unconditioned fear response

- Ventromedial and premammillary nuclei of the hypothalamus : not confirmative
- The Bed Nucleus of the Stria Terminalis (BNST): important in unconditioned fear

28

Conditioned fear vs. unconditioned fear

- Conditioned fear : may be very labile and extinguised quickly
- Unconditioned fear : not very labile and acquired slowly, via evolutionary and adaptive processes or by repeated or prolonged presentation

2

Conclusion

- Amygdala and related brain structures play important roles in fear conditioning and anxiety
- Critical periods may exist in neural plasticity of stress-response systems
- Long-term potentiation may be associated with fear conditioning
- However, there may be differences between the neural networks ass. with conditioned fear and unconditioned fear.