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Abstract - This paper describes implicit restated amnoldi
method algorithm and its application to small size power
systems in order to observe the salient features of IRAM
algorithm. Two area system with 36 state variables and
England 39-bus system with 150 state variables have been
tested using IRAM, and the eigenvalue results of IRAM
are compared with those of the results obtained from QR
method.

1. Introduction

Conventional (R [1,2] method for small signal stability
analysis are not applicable to very large-scale power
systems because of limitation of memory capacity,
computing time, and computation accuracy. In order to
evaluate the small signal stability of power systems, it is
usually required to calculate only a specific set of
eigenvalues with certain features of interest, for example,
local mechanical modes, inter-area modes, etc. Therefore,
significant effort has been expended to develop new
methods with such basic properties as sparcity based
techniques, finding a few specific set of eigenvalues, and
mathematical robustness with good convergence
characteristics and numerical stability [3,4].

Recently another new effective approach which can be
appliable to very large eigenvalue analysis has been
suggested in the society of applied mathematics. This
approach is called implicitly restarted Amoldi method
(IRAM) [5]. IRAM is a technique for combining the
implicitly shifted QR mechanism with a k-step Amoldi
factorization to obtain a truncated form of the implicitly
shifted QR-iteration. The numerical difficulties and storage
problems nomally associated with Amoldi process is
avoided. The algorithm is capable of computing a few (k)
eigenvalues with user specified features such as largest real
part or largest magnitude. Implicit Restarting provides a
means to extract interesting information from very large
Krylov subspaces while avoiding the storage and numerical
difficulties associated with the standard approach.

This paper describes IRAM algorithm and its application
to small size power systems in order to observe the
features of IRAM. Two power systems, in which one has
36 state variables and the other has 150 state variables,
have been tested by ARPACK [6] program which has
IRAM algorithm, and the results are compared with QR
method.

2. IRAM Algorithm and its Applications

2.1 Implicit Restarted Arnoldi Method

The IRAM determines the restart vector implicitly using
the (QR iteration with shifts. The restart occurs after every
m steps and we assume that m > j where j is the number
of sought-after eigenvalues. The choice of the Amoldi
length parameter m depends on the problem dimension n,

the effects of orthogonality loss, and system storage

constraints. After m steps we have the Amoldi factorization
AQe = QeHc +reey,

The subscript stands for "current”. The QR iteration

with p shifts is then applied to H. Here p=m—j and

we have H,= VT H.V because VIHYV, = H*Y. The
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the shift g,
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orthogonal matrix V=V, -

matrix associated with has two crucial

properties:

(1) [V],; =0 for i=l:;-1. This is because each V; is
upper Hessenberg and so V€ R”™™ has lower
bandwidth p =m — j.

(2) Ve :“(Hr_l‘,)[)(H(‘_L’,,fx]) o (He—pyDey
where o is a scalar.

We obtain the following transformation:
AQ, = Q H, + "”(f;{; |4
where @, = Q- V. In view of property (1),
AQ (1:5) = Q.1 )H, (1141 :5) + v, rce,
is a length-j Amoldi factorization. Back to the basic
Amold j iteration at step j+ 1 and performing p steps, we
can have a new length-m Amoldi factorization.

2.2 Shift and Invert Spectral Transformation

The shift and invert spectral transformation with IRAM
enhance convergence to a desired portion of the spectrum.
If (x,\)is an eigenpair for 4 and o = X then

(A—o) 'z =zv, where v=1/(A—0)

These transformed eigenvalues of largest magnitude are
precisely the eigenvalues that are easy to compute with a
Krylov method. Once they are found, it is easy to be
transformed back to the original problem.

Ay=0+ %
J

In addition, the complex shift-invert method needs two
times of storage requirements compared to real shift-invert
method.

2.3 Modeling of linearized power system
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The linearized model of all machines and its control device
can be expressed in the following form:

pz,= Az, + By, + By, )
by = Gty = Djuy, @
Y. = Cx,+ Dy, + Dy, 3
where z, = [ah, .2y, I Ugy = [Vhgrs -+ Vggn >
U= [vhy, U s Gy, = liggts siggn)’-  ye are output

variables. A,~ D, are block diagonal matrices composed of

the corresponding device matrices.
The interconnecting transmission network is represented by

the node equations:
g | = Ygg Yg‘ Ung @
% Ylg Yilva
inl = ‘]lvnl (5)
where,
Ji - nonlinear load bus' linearized coefficient
ing, U,y voltage and current of generator bus ,
n st r t - t 1 t
by = [zﬂgl, oo lngn s Upg = [vngl, cies Upgn]

in, v, voltage and cument of load bus

iy = [i,fnr ~~.~i7:1n]t: Uy = [";n.- ----U:.ln]'

Y, ~ Y, : admittance matrix of network

Equating equation (4) associated with the admittance of
load bus and generator bus, and equation (5), we obtain

bng = Yy — Yy (Yy = 1) ' Y lv,, (6)

Network “equations are written in a synchronouly rotating
R-I reference frame. For synchronous machines, Park's
equations are expressed in a local d-q coordinates fixed on
the generator rotor. It is necessary to transform the network
input variable such as terminal voltage into the local d-q
coordinate fixed on the generator rotor. The following
transformation matrices are used for changing reference
frame:

iy =g = Tiig+ Ty %)
qu = 711”7157 + ]-.'16 (8)
Vs = Uy = Tivgy = Titg, ©

Using transformation matrices above, we can obtain the

complete system state matrix[12]:
pz,= Az, + By, (10)
Y. = Cz,+ Dy, (1

where,

A=A,+B(TY,T\+ D))" (C,— T5;) (12)
C‘_‘C;+Dc(TlYgT1+Dg)_l(Cg—T2) (13)
Y= %~ Yu(Yi= ) Yy)  (9)
T,=T1NT, (15)

2.4 Case Study

In this section, two systems, il-bus system and 39-bus
system, are tested with ARPACK program [6] in which the
IRAM algorithm was implemented with Fortran 77 partly
using BLAS and LAPACK. In order to apply IRAM with
single precision to the power system for small-signal

stability, the PSS tuning program, PWRSTAB [12], and
ARPACK program are integrated into one program. In
addition, the eigenvalues from IRAM in ARPACK  are
compared with the eigenvalues obtained from QR method
in PWRSTAB program.

2.4.1 Two-Area system

11-bus system as shown in Fig. 1, which has 4 machines
equipped with static exciters, is 36 order system and has one
unstable mode which is caused by high response exciter
systems. Two eigenvalues are calculated by ARPACK
(slightly modified to consider complex matrices) with every
shift point from (0.0, j15.0) to (0.0, j1.0) with decrement step
as -1.0. Table 1 shows the comparison of two results between
QR method and IRAM. They give almost identical results.
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Fig. 1 Two-Area System:4 Machine and 11-Bus System

Table 1 Comparison of the eigenvalue results of QR
method and IRAM

No QR IRAM
) Real Imag Real Imag
1 -18659 | +16.458 -18.659 +16.458
2 -19.171 +10.152 -19.171 +10.152
3 -0.466 +7.332 -0.466 +7.332
4 -0.665 +7.162 -0.665 +7.162
5 0.049 +3.867 0.049 +3.867

Table 2 and 3 are, as an example, the single IRAM
results and run statistics with shift (0,j7.0), respectively.
ARPACK can obtain the eigenvalue of interest by setting
Which character parameter. There are 6 modes to be
selected for the concerned eigenvalues. For example, if
smallest imaginary parts are concerned, 'SI' is set as Which
='SI' The fastest way to find the most unstable mode or
rightmost eigenvalues in ARPACK is to set Which="LR',
which possibly tries to find the eigenvalues of largest real
part. OP in Table 3 is the symbol of matrices to be
manipulated to calculate the eigenvalue.

Table 2 ARPACK eigenvalue results with shift (0, j7.0)
Ritz values (Real, Imag) and relative residuals
Col 1 Col 2 Cot 3

Row 1: -4.66479E-01  7.33208E+00  1.00031E+00
Row 2 -6.65237E-01  7.16232E+00  1.40694E+00

Table 3 ARPACK run statistics with shift (0, j7.0)

Size of the matrix is 36

The number of Ritz values requested is 2
The number of Amoldi vectors generated (NCV) is 10
What portion of the spectrum: SI (smallest Imag. part)
The number of converged Ritz values is 2
The number of IRAM update iterations taken is 1
The number of OP*x is 10

The convergence criterion is  5.9604645E-08
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2.4.2 England 39-bus system

England 39-bus system has 150 state variables inciuding
10-machine models, 9-exciter models and 9-governor
models. Table 4 shows the identical eigenvalue results from
two methods as previous one. This indicates that IRAM
provide reliable results regardless of system size. In this
paper, the speed of calculation of IRAM against a
large-scale power system could not be investigated because
of not using large scale eigenvalue program exploiting
sparcity technique and not studying large-scale power
systern, but will be studied in the next research phase.

Table 5 and 6 are the results of single IRAM run and
run statistics with shift (0, j7.0), respectively. IRAM did
not missed the eigenvalues of oscillation even if two pairs
of eigenvalues are closely located. For example, mode 1
and mode 2 shown Table 4 are closely clustered, but
IRAM calculates two pairs of eigenvalues.

Table 4 Comparison of the eigenvalue results of QR
method and IRAM (150 order system)

No QR IRAM

) Real Imag Real Imag
1 -0.283 +7.715 -0.283 +7.715
2 -0.145 +£7.612 -0.145 +7.612
3 -0.091 7105 -0.091 +7.105
4 -0.196 £6.261 -0.196 +6.261
5 -0.127 £3.987 -0.127 +3.987
6 -0.069 +1.338 -0.069 +1.338

Table 5 ARPACK eigenvalue results with shift (0, j7.0)

Ritz values (Real, Imag) and relative residuals

Col 1 Col 2 Col 3
-9.13388E-02  7.10457E+00  9.99996E-01
-1.44625E-01 7.61160E+00 1.49239E+00

Row 1:
Row  2:

Table 6 ARPACK run statistics with shift (0, j7.0)

Size of the matrix is 150
The number of Ritz values requested is
The number of Arnoldi vectors generated (NCV) is 10
What portion of the spectrum: SI

[

The number of converged Ritz values is 2
The number of Implicit Amoldi update iterations taken is 2
The number of OP*x is 17

The convergence criterion is  5.9604645E-08

3. Conclusions

This paper describes implicit restated amoldi method
algorithm and its application to small size power systems
in order to observe the salient features of IRAM algorithm.
ARPACK program is used to apply IRAM with shift and
invert spectral transformation to power system for
small-signal stability. Two area 1l-bus system with 36 state
variables and England 39-bus system with 150 state
variables have been tested using IRAM, and the eigenvalue
results are compared with those of results obtained from
QR method. They shows the identical eigenvalue results in
both systems. Therefore, the research results of this paper
indicate that IRAM provides reliable calculation results of
the concerned eigenvalues regardless of system size.

In the on-going research phase, an efficient sparcity-based
eigenvalue algorithm applicable to very large power system
will be developed using IRAM algorithm.
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