## Long-term Cropping System Impacts on Soybean Grain Quality

Won Kyo Jung', Newell R. Kitchen<sup>1</sup>

Soil Management Div. National Institute of Agricultural Science and Technology, RDA, 249
Seodun dong Suwon city Kyunggi province KOREA, 441-707

<sup>1</sup> Cropping System and Water Quality Research Unit, USDA-ARS, 240 Ag. Engineering Bldg. Univ. of Missouri, Columbia, Missouri USA, 65201

# Objective

To evaluate the influence of long-term cropping system on soybean grain quality properties.

#### Materials and Methods

- O Research site: Centralia, Missouri, USA
- O Soil: Mexico silt loam (Aeric Vertic Epiaqualfs)
- O Soil samples were obtained at the top 7.5-cm soil depth and analyzed for physical and chemical properties
- O Soybean grains samples were obtained in 2002
- O Cropping system treatments (since 1991)

| Cropping system | Tillage    | Crop                                               | Annual fertilizer                                                 | Yield goal                                                                                                |
|-----------------|------------|----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| CS1             | Mulch till | Soybean-corn rotation                              | Corn: N 190 kg ha <sup>1</sup><br>Lime, P, and K by<br>soil test  | Corn: 10,079 kg ha <sup>1</sup><br>Soybean: 2,508 kg ha <sup>1</sup>                                      |
| CS2             | No till    | Soybean-corn-<br>wheat rotation                    | Corn: N 151 kg ha <sup>-1</sup><br>Lime, P, and K by<br>soil test | Corn: 8,063 kg ha <sup>-1</sup><br>Soybean: 2,508 kg ha <sup>-1</sup>                                     |
| CS3             | No till    | Soybean-corn-<br>wheat-rotation<br>with cover crop | Corn: N 151 kg ha <sup>-1</sup><br>Lime, P, and K by<br>soil test | Corn: 8,735 kg ha <sup>-1</sup><br>Soybean: 2,508 kg ha <sup>-1</sup><br>Wheat: 4,031 kg ha <sup>-1</sup> |

### O Landscape positions

Footslope (FS): less than 1% slope at the bottom position of plot stripe

Backslope (BS): slope is between 1% and 2%

Summit (SS): greater than 1% slope with top position of plot stripe

<sup>\*</sup>Corresponding author: (Phone) 031-290-0276 (E-mail) wonkyo@rda.go.kr

#### Results and Discussions

- O The impact of cropping system on soybean grain quality varied little after 12 years of practices even when comparing tilled to no-tilled system.
- O Significant difference of linoleinic acid content was found when cropping system 3 was compared to cropping system 1.
- O Soybean linoleinic acid content was significantly correlated to Bray1-P, while oleic acid showed significant correlation with soil pH in top 7.5-cm soil depth.
- O Twelve years of cropping system practice impacts little on soybean quality properties. We found that no-till practices did not significantly influenced for variation of soybean grain quality properties when compared to conventional tillage practices.

Table 1. Probability level of F-test for soybean quality properties by cropping systems and landscape positions.

|                         |   |         |      | Saturated fatty acid |                 | Unsaturated fatty acid |                  |                    |
|-------------------------|---|---------|------|----------------------|-----------------|------------------------|------------------|--------------------|
| Source of variation     |   | Protein | Oil  | Palmitic<br>acid     | Stearic<br>acid | Oleic<br>acid          | Linoleic<br>acid | Linoleinic<br>acid |
| Block                   |   | 0.09    | 0.13 | 0.92                 | 0.86            | 0.80                   | 0.66             | 0.91               |
| Cropping system (CS)    |   | 0.92    | 0.96 | 0.09                 | 0.91            | 0.16                   | 0.30             | 0.02               |
| Landscape position (LP) | 2 | 0.46    | 0.11 | 0.79                 | 0.07            | 0.15                   | 0.16             | 0.03               |
| CS*LP                   | 4 | 0.04    | 0.03 | 0.40                 | 0.91            | 0.56                   | 0.56             | 0.91               |
| CS contrast             |   |         |      |                      |                 |                        |                  |                    |
| CS1 vs. CS2             | 1 | 0.79    | 0.97 | 0.05                 | 0.76            | 0.70                   | 0.62             | 0.07               |
| CS1 vs. CS3             | 1 | 0.78    | 0.80 | 0.27                 | 0.79            | 80.0                   | 0.16             | 0.01               |
| LP contrast             |   |         |      |                      |                 |                        |                  |                    |
| FS vs. BS               |   | 0.50    | 0.66 | 0.55                 | 0.09            | 0.26                   | 0.28             | 0.10               |
| FS vs. SS               | 1 | 0.24    | 0.06 | 0.61                 | 0.35            | 0.29                   | 0.31             | 0.11               |



Figure 1. Relationship of soil properties and soybean quality properties mass