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Abstract
A review of how the functions of two or more independent wvariables can be
approximated by using fuzzy systems is provided in this paper. We start with an exact
represention of a linear interpolation function of two independent variables by using a
fuzzy system, Next, we describe how this function can be approximated by another fuzzy
Thus, a

reduction of the storage needed is achieved by storing the fuzzy rules or equivalently

system with a lesser number or with a desired number of output fuzzy sets.

the output fuzzy set numbers instead of storing the whole discrete function values. A
description on how the cubic spline interpolation function can be represented exactly
by using the fuzzy system method is provided, along with a few examples where fuzzy

rule tables with a size of 7x7 provide a representation of the functions with relative

errors of the order of 107 or less.

1. Introduction

It has been proven a long time ago that
the fuzzy systems are universal approximators.
Castro and Delgado [1] showed that for a
continuous function f(x) on a compact set and
for a given >0, there exists a fuzzy system
that approximates f(x) within & B. Kosko{2]
proposed a fuzzy system with two levels, one
of which is being used to approximate and
tune the fuzzy rules. Wang et al. [4] provided
a constructive method for building a fuzzy
system to approximate a function within a
prescribed accuracy.

As these papers use linear approximations,
they require a very large number of fuzzy
rules and a large number of fuzzy sets. By
using the cubic splines, we proved earlier [5]
that a continuously differentiable function can
be represented very accurately by using a
small number of fuzzy rules In fact, we
showed that the cubic spline interpolation
functions for the functions of two variables
can be exactly represented by fuzzy systems.
In the following, we first describe how to
generate a fuzzy system for an
representation of the linear interpolation
functions of two independent variables.

exact
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We then proceed to show how the number
of output fuzzy sets can be reduced without
losing the accuracy. Using the fact that the
linear interpolation has the approximation
accuracy of O(h) while the accuracy is O(h®)
for the cubic spline interpolation functions, we
repeat the same process to transform the cubic
spline interpolation function to a fuzzy system
form.

2. A fuzzy system to represent linear
interpolation functions

Let z=f(z,y) be an arbitrary function of
two independent variables defined on the
interval [—1,1]x[—1,1] and let z;=—1+ih ,

y; =—1+jh , where h:jiv for a positive even
integer N. Let g(z,y) be the linear
interpolation of f(x,y) at the grid points
(zy;), $3=0,1,..,N. Then g(z,y) is defined
by a linear interpolation of the function values
at the four nearest grid points fi;, fii+1,

fk+111, fk+1,l+1 y where Ty, is the nearest grld
point such that z; <z and y is the nearest

Let T.(z)
equivalently the spike function defined on the
support interval [z;_;,%;4,] for i=0,1,...,N
and similarly for J}(y) 's be the triangular
functions defined on the grids wy v, --Yn,

be the triangular function or

N
then we can write g(x,y)= E fii L) T(y) .
ij=0

(1) Fuzzification of the input variables z,y

We take Zi(z),i=0,1,2,..N be the fuzzy
sets for the input wvariable <z and
T,(y),j=0,1,2,...N be the fuzzy sets for the
input variable y. Given an arbitrary point
(z0,%) in the interval [—1,1]x[-1,1], we
fuzzify =« T,(z),

T, +1(z) with the nonzero membership values

to find the fuzzy sets
A, 1—=X respectively. Similarly, we fuzzify y
to find the fuzzy sets Z;(y), 7,,,(y) with the

nonzero  membership  values i, 1—pu

respectively.

Thus, we have four fuzzy sets
TL(e)x T(y) , L(2)x T, (y) , Tisa(@) X Tly)
T4 ()X T, (y) with membership values
A, AL—p), (=), @=M)1—p).

(2) Generation of the fuzzy rule table

First, we form a (N+1)x(N+1) matrix
whose (i,j) entry is f;;. Next, we sort the
array of (N +1)® entries into an increasing
order and delete the duplicate ones. Let the
ordered list be {tlk=1,2,...M}
to f; as 'l
corresponding to t;, '2’ to those corresponding
to ty, and so forth. Note that the largest will
get an ordinal number which will be less than

or equal to (N+1)). We now form a rule
table by the  ordinal number
corresponding to fi, as the entry of (k,l), we

and assign

ordinal numbers

to those

using
obtain a fuzzy rule table.

(3) Output fuzzy sets
Using the array {t,/k=1,2,...M} , we form a

ie. T, is supported on the interval [tx_1,tps:]

set of triangular fuzzy sets {mk=172,--
and is centered at t.

(4) Defuzzification

For the defuzzification of the output, we use
the center area defuzzification method. When
we have four fuzzy sets 7, ,’s with nonzero

weights v, ,, for i=12,3,4 as the output from

4
the fuzzy inferences, we compute Eyki,l,tk,,l,

i=1
as the value of the fuzzy system, where ¢, ;

is the center of the support for the triangular
fuzzy set T, .

It is fairly easy to see that the above fuzzy
system is an exact representation of the linear
interpolation of the function. A simple routine
proof is omitted.

To reduce the number of output fuzzy sets
and to adjust the support intervals for the
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output fuzzy sets, we define
t, =min{f, }i,j=1,2,..N} . Let t,=t,—h,
ty=tgth, .=t +h. We sort f;; in an
increasing order, assign g;;=t; to all
fea€ - pt;ey]  for that a

discrete function g;; is defined on the interval

i=1,2,... so

[-1,1] x[~1,1] as an approximation of f(z,y)

Now, we revise the fuzzy rules and the

output fuzzy sets properly to make the
necessary changes. Then we have the
following.

Theorem 1. Let Flz,y) be the function
defined by the fuzzy system described above,
then we have |Fla,y)—Glz,y)l<h for all
(z,y)E[~1,1]x[-1,1] where G(z,y) is the
function defined by the earlier fuzzy system,
and hence Flz,y)— f(z,y) = O(h) .

Finally, consider the case where we want to
fix the number of output fuzzy sets, say as L.
Divide the interval [t,,ts] into L subintervals
of equal length. Let t;,5=0,1,2,...L be the
nodal points and let J, =[t,_1tes1], using
=t

L
Now, if we define the output fuzzy sets to be
triangular sets with Z, as the support intervals

t.,=ty—h, tpy;=t;+h with h=

and t, be the center of the supports.

3. A fuzzy system to represent the cubic
spline interpolation function

Let i, Y5, 7/7J=_17051721MN+1 be the
nodal points in each axis and define the cubic

» 1
B-splines B(t)'s as — X
P 6K°

(t—t,-_2)3

R +3h2(t—t; ;) +3h(t—t,_,) —3(t—t,_,)°

R +3h (b, —t) +3h(t, . —t)? —3(t; ., — 1)

(tisa—t)° (1)

0

on each of the intervals [t;_o.t;_1), [t;i—1.t:],
[tit;41), and [ti11t;00] respectively. Then the
function f(z,y) can be approximated by a
cubic spline function

N
g(zy) = X2f,,;B,@) B, (y) ———(2)

Y]
where f;; = f(z,y;) .
We use B(z)XBy) as input fuzzy sets
instead of Z;(z)X T;(y) for the fuzzification of
(z,y), then we have the following.

Theorem 2. Let G(z,y) be the function
defined by the fuzzy system described above,

then we have Glz,y)— f(z,y) = O(h?)
4. Examples

In this section, we describe two examples
[5] of the fuzzy system designed to represent
the cubic spline interpolation function for the
polynomials in z and y. We compare the
evaluation results with those of a Lagrangian
interpolation. Double precision calculations are
used for all the cases so that the calculation
error is relatively minor when compared to the
intrinsic system error. For all of the cases in
the following examples, we evaluated the fuzzy
systems at 10,000 points and computed the
average of the absolute errors.

Table 1. Fuzzy rules to compute
fz,y) =2 -2y

1 2 3 4 5 6 7
23 9 6 4 3 2 1
26 22 12 8 7 5 3
23 22 20 18 16 14 13
15 16 17 18 19 20 21
23 22 20 18 16 14 13
31 29 28 26 24 14 11
36 34 33 32 30 27 13

NSO WY

Example 1. A Fuzzy system for

fla,y)=2*—2%y

The fuzzy rules obtained for this function on
[-1,1] with n=4 divisions are shown in Table
1. Note that we need 7 fuzzy sets for the
input fuzzificatin in this case. A summary of
the evaluation results by the fuzzy system at
10,000 points, along with those by a fuzzy
system using triangular input fuzzy sets for
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n=4,10,20 are shown in Table 2.

Table 2. Comparison of the Evaluation
Errors (Average; Spline vs Spike)

n Spline Spike  No.of Rules
4 0.15x1077 0.2034  49(25)

10 0.18x1077 0.0370 169(121)
20 0.19x1077 0.0093 529(441)

Example 2. A Fuzzy system for
flz,y) =a* +4*

The fuzzy rules obtained for this function on
[~1,1] with n=4 are shown in Table 3 and
the centers of the support for the output fuzzy
sets are at -0.083333, -0.020833, 0.041666,
0.479166, 0.541666, 1.041666, 3.91666, 3.979166,
4479166, 7.916666. Table 4 shows a summary
of the evaluation errors at 10,000 points,
including those by a fuzzy system using
triangular fuzzy sets for n=4,10,20.

Table3. Fuzzy rules to compute f(z,y)=zy

1 2 3 4 5 6 7
1{13 12 10 7 4 2 1
2112 11 9 7 5 3 2
3|10 9 8 7 6 5 4
417 7T T 77T 1T 7
54 5 6 7 8 9 10
612 3 5 7 9 11 12
P12 4 7 10 12 13

Table 4. Comparison of evaluation errors

n  Spline Spike  No.of Rules
4 0.007812 0.434699 49(25)
10 0.000196 0.097400 169(121)
20 0.000012 0.026187 529(441)

5. Conclusion

We reviewed how to setup a fuzzy system to
represent a linear interpolation function or
a cubic spline interpolation function for an

arbitrary smooth function, i.e. twice or
three times continuously differentiable
function. In our earlier papers, we showed

how polynomials can be represented by a fuzzy

system [5] and how a twice continuously

differentiable function can be represented
[6] by a fuzzy system with an emphasis on the
gray scale image presentation of the fuzzy
rules.

We showed in this paper that the fuzzy
system representation not only provides an
efficient tool for evaluating the cubic
spline interpolation function but also it
provides a mechanism to approximate the
dependent variable so that the number of
output fuzzy sets can be reduced to a great
deal in some cases without loosing the
accuracy.
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