Optimization for Chip Stack in 3D Packaging

Kazumi Hara

(Seiko Epson/Japan)

EPSONEXCEED YOUR VISION

ISMP 2005

Optimization of terminal structure for chip stack in 3D packaging

September 28, 2005

Kazumi Hara Advanced Technology Development Department Seiko Epson corporation

Contents

- 1. Introduction
- 2. Model and Process
- 3. Optimization for interconnection
- 4. Performance
- 5. Conclusions

EPSONEXCEED YOUR VISION

1. Introduction

Advantages of 3D packages with Through-Silicon Vias

- 1. Extremely small
- 2. Reduction of the number of parts
- 3. Good electrical transmission characteristics
- 4. Possibility of wafer level production
- 5. Cost reduction

EPSON"

Applications of the Technology

(1) Silicon Interposer module

Excerpt from press release of Fujitsu on April 8,2002

EPSON

Applications of the Technology

(2) CCD Module

2001-351997 (Patent application laid-open disclosure number)

Canon

Except from press release of **ASET** on Feb 18, 2004

EPSON*

Applications of the Technology

(3) MEMS complex

JP3634676 Nihon Dempa Kogyo Co., Ltd

(4) Memory stack

JP2605968 NEC

EPSON EXCEED YOUR VISION

2. Model and Process Flow

Model

Through-Silicon via

Specification

Size	5mm x 5mm
Thickness	45 µm
I/O Count	120
Pitch	150µm
Pad size	120µm
Diameter of via	35um x 35um

Package

Chip

EPSON

Process Flow

Features

- No flattening process for active-side terminals
- · No insulation layer on the backside of wafer
- Simple process
- Cost reduction

3. Optimization for interconnection

10-layer chip stack

Specification

Package Thickness 810μm IC Size 5mm x 5mm I/O Count 120 Pitch 150μm

EPSON"

Solder Drop

Initial structure of backside terminals

Solder drop at solder joints

EPSON"

Modification

The modified structure of backside terminals

Verification using test chips

Solder shape and directions of surface tensions

EPSON'

Result of the Modification

Modified backside terminal Estimation of the amount of solder

Specification of modified terminals

Height

 $25\mu m$

Distance of Cu exposure

_--,--

Initial thickness of solder

7μm

 $4\mu m$

Solder Joint

EPSON'

Crack of Solder Joints

Crack of solder joint

Cause

Warpage of the chip

Height change along a diagonal line of the chip

The result of 3-Dimensional measurement

EPSON

The cause of warpage

Why the crack occurred? Insulation on the surface of the chip

Relation between insulation thickness and warpage

EPSON*

Effect of Vacuum Chucking

Warpage of bonded chips

Effect of vacuum chucking

EPSON*

Summary of the Section

Problems	Causes	Measures
Solder Drop	Shortage of constraints of melting solder	Cu exposition on on the sidewall of the backside bumps
Crack of solder joints	Warpage of chips	Reduction of thickness of insulation on the surface
	Vacuum Chucking	Elimination of vacuum chucking during bonding

4. Performance

EPSON

Thermal Cycle Test

Test Condition

-55↔125degrees

Period 40 min

Result

No failures after 500cycles (n=14)

Specimen

Package

The number of layer

Material of Substrate

Ceramics

The number of specimens

2 types of resin evaluated

Transition of resistance

Verification of Normal Operation

SRAM Package

Apparatus

Specification

Package	
Size	7mm x 8mm
I/O Count	48
Ball pitch	0.75mm
Number of layer	2
IC	
Size	6mm x 7mm
I/O Count	48
Thickness	0.05mm

EPSON'

5. Conclusions

- Simple process flow was realized with the modification of structure of back side terminals.
- Cu exposure on the sidewall of backside terminals was essential to prevent solder from dropping.
- Decreasing the deformation of chips during bonding was essential. Following measures are effective.

Reduction of the thickness of insulation layer Eliminating vacuum chucking during bonding

- Good thermal cycle performance was verified.
- Normal operation was confirmed by using SRAM where through –Si vias were formed.

Thank you for your attention