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Abstract

Isomap [1] is a manifold learning algorithm, which extends classical multidimensional scaling (MDS)
by considering approximate geodesic distance instead of Euclidean distance. The approximate
geodesic distance matrix can be interpreted as a kernel matrix, which implies that Isomap can be
solved by a kernel eigenvalue problem. However, the geodesic distance kernel matrix is not
guaranteed to be positive semidefinite. In this paper we employ a constant-adding method, which
leads to the Mercer kernel-based Isomap algorithm. Numerical experimental results with noisy
"Swiss roll" data, confirm the validity and high performance of our kerne!/ Isomap algorithm.

1. Introduction

Manifold learning involves inducing a smooth nonlinear
low-dimensional manifold from a set of data points drawn
from the manifold. Isomap is a representative isometric
mapping, which extends metric MDS by considering
approximate geodesic distance, instead of Euclidean
distance {11.

Classical scaling (that is one of metric MDS) is closely
related to principal component analysis [2]. The
projection of the centered data onto the eigenvectors of
the data sample covariance matrix, returns the classical
solution. Classical scaling with Euclidean distances as the
dissimilarities, is explained in the context of PCA, so that
it provides a generalization property (or projection
property) where new data points (which do not belong to
a set of training data points) can be embedded in a low~
dimensional space, through a mapping computed by PCA.
In the same manner, a non-Euclidean dissimilarity can be
used, although there is no guarantee that the eigenvalues
are nonnegative. A relationship between kernel PCA and
metric MDS were investigated in [3].

The approximate geodesic distance matrix used in
I'somap, can be interpreted as a kernel matrix [4].
However, the kernel matrix based on the doubly centered
approximate geodesic distance matrix, is not always
positive semidefinite. We exploit a constant-adding
method such that the geodesic distance-based kernel
matrix is guaranteed to be positive semidefinite. Mercer
kernel-based Isomap algorithm has a generalization
property so that test data points can be successfully
projected using a kernel trick as in kernel PCA [5],
whereas in general embedding methods (including
Isomap) do not have such a property. Also, in this paper,
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we compare several methods to make kernel matrix to be
positive semidefinite.

2. Kernel Isomap

2.1. Isomap as Kernel Method

As in multidimensional scaling (MDS), Isomap first
constructs a matrix of pairwise distances between the
different data points. However, instead of directly using
Euclidean distance in the high—-dimensional space, Isomap
uses an approximation of geodesic distance. First, it
constructs a symmetric adjacency graph using criteria
such as symmetric nearest neighborhoods or e-ball
neighborhoods based on Euclidean distance. Then
Dijkstra's algorithm is used to compute the shortest path
among edges in the neighborhood graph to define the
total distance between pairs of points. Finally, MDS is
applied to this shortest path distance matrix.

As pointed out in [3], metric MDS can be interpreted as
kerne!l PCA. In a similar fashion, Isomap can be
considered as a kind of kernel method [4]. We can take
the approximated distances D used in Isomap and
consider the following kernel:

K=-1HD?H, (1)

where I means element-wise square of D, H is the
centering matrix, given by H=I-eeT/N and
(1,1, 1]"€R".

However, this kernel is not guaranteed to be positive
semidefinite. The reason why the Kkernel matrix of
Isomap is not positive definite in the smooth manifold, is
mainly the approximation of the geodesic distance and
noise. So, we propose kernel Isomap which has the noise
robustness and projection property.
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2.2. Kerne!l Isomap Algorithm

Given N objects with each object being represented by
an m~dimensional vector x; /=1,--, NV, the kernel Isomap
algorithm finds a mapping which places N points in a
low-dimensional space. In manifold learning, it is
assumed that the manifold is generated by embedded
low-dimensional data by some mapping. Two theorems
stated below show the necessity and possibility of the
positive semidefinite kernel matrix.

Theorem 1. [6] Given an arbitrary map ¢ into a
feature space H, the matrix X

Kij = (#(x;), ¢(x; ) @

is positive semidefinite.

Theorem 1 means that if we calculate the kernel from the
manifold learning, then that kernel has to be positive
semidefinite. Now, with the kernel of Isomap which is not
positive semidefinite, we have to find the positive
semidefinite kernel to reflect the manifold properly. The
positive semidefinite property guarantees the embedded
manifold according to the kernel.

Theorem 2. {7] Given an arbitrary (possibly non-
metric) (N x N) dissimilarity matrix D with zero self-
dissimilarities, there exists a transformed matrix D
such that the matrix D can be interpreted as a matrix of
Euclidian distances between a set of vectors
{x7,x2,-,xn}. Dis derived from D by both symmetrizing
and applying the constant shift embedding trick.

In Theorem 2, the modified dissimilarity, 2, guarantees
the positive semidefinite kernel and low-dimensional
embedded manifold. To calculate the D stated in
Theorem 2, an analytic solution was proposed [8][2].
The algorithm is below:

Algorithm Outline: Kernel Isomap
Step 1. Identify the k nearest neighbors (or e-ball
neighborhood) of each input data point and construct a
neighborhood graph where edge lengths between
points in a neighborhood are set as their Euclidean
distances.
Step 2. (Shortest Path Problem) Compute approximate
geodesic distances, dj containing shortest paths
between all pairs of points.
Step 3. Construct a kernel matrix K(I¥) based on the
approximate geodesic distance matrix D?as Eq. (1).
Step 4. Compute the largest eigenvalue, ¢’, of the

matrix
0 2K(DY)|,
-1 -4K(D)

(3

and construct a Mercer kernel matrix K = B(D?) by
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12=K(52)+2cK(D)+%c2H, (4)

where K is guaranteed to be positive semidefinite for
c=c.

Step 5. Compute the top n eigenvectors of K, which
leads to the eigenvector matrix V € RY*” and the

eigenvalue matrix A € K",
Step 6. The coordinates of the N points in the a~
dimensional Euclidean space are given by y=a472 7.

A main difference between the conventional Isomap and
our kernel Isomap, lies in Step 4 which is related to the
additive constant problem that was well studied in metric
MDS. The additive constant problem aims at finding a
value of constant, ¢, such that the dissimilarities defined
by

dy =dy +c(1-8y). (5)

have a Euclidean representation for all ¢ 2¢" and &jis the
Kronecker delta. Substituting dij for dij in Eq. (5) gives
Eq. (4). For K to be positive semidefinite, it is required
that x! x>0 for all x. Cailliez showed that ¢” is given by
the largest eigenvalue of the matrix (3) (see Sec. 2.2.8 in
[2h.
The matrix K is a Mercer kernel matrix, so its (/)-
element is represented by

Ky =k(x;,x;) = ($(x),8(x)) (6)
where ¢ is a nonlinear mapping onto a feature space or
a low-dimensional manifold. The coordinates in the
feature space can be easily computed by projecting the
centered data matrix onto the normalized eigenvectors of
the sample covariance matrix in the feature space,

c=L(om)(on) @

where ¢ = [¢(xl ), ...,¢(xN)] .

2.3. Generalization Property

Isomap is one of kernel methods like kernel PCA. But,
the main difference is that kernel PCA also provides an
embedding for test points, whereas Isomap only embeds
the training points. As kernel PCA, the kernel Isomap
provides a generalization property (projection property),
which provides a mapping for a test data point. If new
test data points ¢, t5 -, t, are given, we can project the
test data onto the low-dimensional embedded manifold.
First, we need to calculate the kernel matrix of test data.
So, geodesic distance dry from test data point ¢ to the
training data x;, j=1,...,N, is obtained. Then the following
relation in the data space is derived,
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de'lj =(t,,t,)+(xj,xj)-2(tl,xj) (8)

We can derive the test kernel matrix, A7 € R***,

the kernel matrix of training data in Eq. (4)

N N
2 2 7 %
trx)yg ==5| dty a7 2. A+ L Ku =Ky | ©
k=1 I=1

using

where (ti,xj)¢ is the (j)-element of the test kernel
matrix, K7 . With A7, we can derive the centered kernel
matrix as in kernel PCA,

(10)
where all entries of e; €R°*" and ey €RY*Y are I/NV.

N = . . .
Here, Zj:lKle:O' since K7 is the kernel matrix of

IZT = KT —eLK -—KT€N +€L12€N ,

centered data. Finally, the projection of test data are

N
ylj=ZijK7j!’ (11)
i=1
where Vj is the th-element of VJin Step 5 and y," is the

sth-element of ..

3. Numerical Experiments

We compared our Kernel Isomap algorithm to the
conventional Isomap algorithm, using Swiss roll data that
was also used in Isomap. Noisy Swiss roll data was
generated by adding isotropic Gaussian noise with zero
mean and 0.25 variance (see Fig. 1 (a)). In the training
phase, 1200 data points were used and the neighborhood
graph was constructed using k=4 nearest neighbors of
each data point, respectively. As in Isomap, the shortest
paths were computed using the Dijkstra's algorithm, in
order to calculate approximate geodesic distances.

An exemplary embedding result (onto 3-dimensional
feature space) for Isomap and kernel Isomap, is shown in
Fig. 1 (b) and (c). Though the results were not presented
in this paper, for the case of noise-free Swiss roll data
and noisy semi-sphere data, our kernel [somap algorithm
outperformed Isomap. The generalization property of our
kernel Isomap is shown in Fig. 1 (d) where 3000 test data
points are embedded with preserving local isometry well.
In this figure, comparing (c) with (b), we can also see the
noise robustness of kernel Isomap. Even though the
conventional Isomap also looks like robust algorithm in 2
dimensional embedded manifold, in 3 dimensional space,
it is not robust any longer. The manifold in (b) is not
smooth while (¢) is smooth.

4. Conclusion

We have presented the kernel Isomap algorithm where
the approximate geodesic distance matrix was
interpreted as a kernel matrix and an adding-constant
method was exploited so that the geodesic distance-
based kernel became Mercer kernel. Also, we compared
other methods with adding-constant method to make the
kernel matrix positive semidefinite. Main advantages of
the kernel Isomap could be summarized as follows: (a)
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generalization property (i.e., test data points can be
projected onto the feature space using the kernel trick as
in kernel PCA); (b) robustness for low-level noisy data.
The generalization property will derive the kernel Isomap
to be useful for pattern recognition problems.
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(a) (b)

(c)
Fig. 1. Comparison of the conventional Isomap with our
kernel Isomap for the case of noisy Swiss Roll data: (a)
noisy Swiss Roll data; (b) embedded points using the
conventional Isomap:; (¢) embedded points using our
kernel Isomap; (d) projection of test data points using the
kernel Isomap. :



