F3AFEFHEEAY 2005 =83 Vol. 32, No.1(A)

449 Wd /Mg 292HE 9%
Auge] S=dlol I §A7]

25 dutid, o]dF, vt 28, ¥HE
dAdstn AFE Gt
{etaropa’, airtight}@yonsei.ac.kr
{srini, hantack}@cs.yonsei.ac.kr

A Cost-Effective Hardware Image Compositor for
Sort-Last Parallel Visualization Clusters

Emanuel Taropao, Won-Jong Lee, Vason P. Srini, Tack-Don Han
Department of Computer Science, Yonsei University

Abstract
Real-time 3D visualization of large datasets imposes a distributed architecture of the rendering system and dedicated hardware for image
composition. Previous work on this domain has relied on prohibitively expensive cluster systems with hardware composition done by
complicated schemes. In this paper we propose a low-cost hardware compositor for a high performance visualization cluster. We show the
system’s design and the results obtained using Simulink [1] for our image composition scheme.)

1. Introduction

Interactive 3D visualization is necessary from online high detail design
systems to scientific computing, geo-science and medical imaging applica-
tions. All these applications require processing of huge datasets at interac-
tive speeds, while being computationally intensive.

A viable solution for addressing the above requirements is to use clus-
tering systems that offer a flexible, scalable and relatively cost-effective
environment [2], {3]. The common technique used is to divide the dataset
to be rendered as equally as possible among the rendering PCs, to render
each subdivision in parallel and finally to obtain the whole image by com-
posing the rendered subdivisions.

The scalability of the system and hence its performance is limited by
bottlenecks that appear from initial image division algorithm to the syn-
chronization among the rendering nodes and the communication network.

In our opinion, the most limiting of these bottlenecks occurs in the im-
age composition stage. As composition is applied over the transformed
original dataset, its computation time over data size factor is of utmost
importance for the overall system’s throughput.

Image composition has been previously implemented both in software
[4], [5] and in hardware [6], [7]. The software approach has the advantage
of a reduced cost but its computation time dependence with the number of
communicated pixels makes it very slow for something else but the small-
est data sizes. The hardware implementation minimizes the number of
transmitted pixels and can efficiently compose sub-images in parallel, thus
offering a minimum delay time. Its main disadvantage remained until now
its high cost.

In this paper we propose an inexpensive hardware compositor for high
performance visualization cluster. The hardware image compositor is de-
tailed by section 2. Section 3 contains the results on few datasets using
Simulink [1]. The paper concludes with section 4 where conclusions are
drawn and future research directions are identified.

2. System Design

The principle used for image composition is Binary Space Partitioning
[8]. Thus, the inner structure of the hardware image compositor is binary
tree-shaped, where parent nodes are doing image composition for their two
children nodes. The compositor design process has started from the model
given for the Mitsubishi Precision Compositor (MPC) [7], but its imple-
mentation is done using less expensive hardware and reducing the gate
count.

Simulink was used both as a design and as a simulation environment
for proving the correctness of the compositing circuit and for performing
initial performance estimations. From Simulink, VHDL code has been
obtained that will be used to configure the ML310 FPGA board [9]. The
Simulink implementation of the hardware compositor is given in Figure 1.

2.1 Priority Assignment

Using a BSP algorithm, we need to realize the blending of images
according to their order in the final image. For specifying ordering among
images, we use the notion of priority. The higher the priority, the closer to
the observer the respective sub-image is.

As the composition happens in parallel for all pairs of sub-images of
each frame, the priorities need to be known at the beginning of each com-
position step. The image division algorithm used for distributing the image
to the rendering nodes can verify the order of sub-images in the final im-
age and thus assign a priority for each sub-image of each frame. The rest
of priorities for partially composed sub-images of the same frame will be
determined using maximum propagation,

Pr (Il | 12) = Max (Pr (I1), Pr (12)) 6

where Pr () represents the priority associated with sub-image /.

712

AT FREEAS] 2005

=23 Vol. 32, No.1(A)

Figure 1: Hardware Image Compositor for a rendering cluster of 4 PCs

The source and destination for the blending circuit can be easily se-
lected among the two children of the respective blending node. The
blending equation controls how the source and destination images are
combined in the final image.

2.2 Alpha Blender Architecture

The design of the alpha blender can be done in two ways: generic —
supporting all the blending functions defined in OpenGL [10] and special-
ized — implementing a single blending function. The generic circuit is eas-
ily re-configurable but has a higher gate count. The specialized circuit has
a lower gate count but needs to be redesigned if the blending function is
changed. ’

Because efficiency is our utmost concern, we have chosen the second
option for our blender architecture. The alpha blending will be performed
in back to front order, implementing OpenGL’s blend (1, 1 — Source Al-
pha) for each channel. The resulting blending circuit is represented in
Figure 2.

Our design started from the standard alpha blending equations ex-
pressed for the blending mode (J, I — Source Alpha) (2) and (3), where
S, represents the source alpha channel, A5 the scaling factor, Cs and Cp
represent the initial channel values for source and destination images.

C=Cs+Cp*Dc 2
De=1-84 *A4s 3)

Factoring out the constants from (2) and (3) and using back-to-front
rendering we were able to reduce the gate count for processing each pixel
from 16 multipliers and 12 adders to 5 multipliers and 8 adders, while
maintaining the same level of parallelism. The equivalent channel expres-
sion is given in (4).

C=Cs+Cp—(Dc*Cp) ()]
We have used rounding blocks for restricting the computed values to

the interval [0, 255]. For domain changes from byte to double precision
real and back to byte standard converters were used.

?

01

&

8

©

0

B

g

=
g

0

(g

Figure 2: Alpha Blender Architecture

With a low gate count and using only simple blocks, the resulting
blending circuit is highly effective, having both a small delay and power
consumption.

2.3 Data Initialization and Loading

The input data for the compositing hardware has been generated using
volume rendering with per fragment lighting and post shading. The distri-
bution of data on each rendering node has been done using a load balanc-
ing algorithm and parallel communication primitives.

Each sub-image contained four channels: R, G, B and alpha. In this
initial stage of the system, each sub-image data has the same size as the
final image, regardless of the total number of divisions initially performed.

Therefore, in all but the final step of composition image fo empty
space blending or empty to empty space blending occurs. Possible direc-
tions for optimization will be detailed in a future paper.

The hardware compositor designed in Simulink imported the image
data from Matlab [11] workspace. The matrices corresponding to each
channel were read as two dimensional time-invariant arrays of signals. For
verifying the correctness of the composition algorithm we displayed result-
ing sub-images at each step of the composition using Matlab’s Video and
Image Processing Blockset.

2.4 Scalability

The circuit presented in Figure 1 is realized for a cluster composedby
4 rendering PCs and 1 display node. Using a very simple design for the
image compositor, we can easily extend the binary tree image composition
architecture to support any number of large rendering nodes. The basic
principle of priority inference using maximum propagation given in'(1)
remains valid for any dimension of the rendering cluster.

The components number has a linear dependence with the doubling
size of the rendering cluster: knowing that the number of interior nodes.in
a complete binary tree with n leaves is n-1 we can give an upper margin‘in
the form of ceiling [(n-1)/2] for the added number of hardware blenders
required for the image composition.

There is an obvious tradeoff between the simplicity of the composition
scheme and the scalability of the circuit. For our initial design, the compe-
sition process is greatly simplified by considering each sub-image to be'of
equal size with the resulting image. Therefore the compositing nodes are
interconnected in a straightforward manner allowing for efficient data

713

FFATEEEEEUI 2005 =24 Vol. 32, No. 1(A)

Figure 3: Human skull dataset composition for a rendering cluster consisting of 4
PCs and one display node. The first level is the input data from each of the render-
ing PCs to the compositing hardware. The second and third levels represent compo-
sition steps. -

transmission between the compositor’s inner nodes. It remains to be ex-
perimented if advanced heuristics for reducing the sub-image size resulting
in complicated compositor architecture will yield a higher performance by
diminishing the number of transmitted pixels but limiting the scalability of
the circuit.

3. Experimental Results

We verified our composition scheme by performing several experi-
ments on few standard datasets. Figure 3 shows the results obtained on a 4
PCs rendering cluster with one display node for a CT skull dataset (256 x
256x 256), courtesy of University of North Carolina.

Having implemented an easily scalable and flexible image composi-
tion scheme, we tested it for other rendering cluster dimensions. In Figure
4 results are showed for a rendering cluster formed by only 2 PCs and one
display node. For the simulation we used the “lobster” dataset (301 x 324
x 56), courtesy of SUNY Stony Brook.

The results were obtained using Simulink simulation environment. The
data were represented as time-invariant matrices of signals and were im-
ported from Matlab workspace into Simulink environment.

When composing two images, the simulation is ran for each pair of

channels (R, G, B and alpha) of source and destination images sequentially.

In an FPGA implementation of the circuit, the parallelism will be better
exploited.

Thus we can work in parallel on a large portion of the input images
and we can pipeline our computation stages.

4. Conclusions and Future Work

We have presented an inexpensive hardware image compositor for a
high performance rendering cluster system. The design we implemented
has a good scalability and is extensible, the number of added components
having a linear dependence with the doubling of the rendering nodes.

The hardware compositor design implemented in Simulink will be
converted using Xilinx System Generator [12] to be mappable on the Xil-
inx ML310 board. Currently we are building the rendering cluster, using
high performance PCs with high-end GPUs. This system will serve as test-
bed for advanced visualization algorithms and applications.

(a) RGB composition (b) Alpha composition

- Figure 4: Lobster dataset composition for a rendering cluster consisting of 2 PCs

and one display node. The first level is the input data from each of the rendering
PCs to the compositing hardware. The second level represents the output of the
compositing hardware.

REFERENCES

[The MathWorks — Simulink Simulation and Model Based Design
http://www.mathworks.com/products/simulink/

[2] S. Muraki, E.B. Lum, K.L. Ma, M. Ogata, X. Liu — A PC cluster system
for simultaneous interactive volumetric modeling and visualization
Proceedings of Parallel Visualization and Graphics *03 pp. 95-102

3] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, T. Ertl -
Hierarchical visualization and compression of large volume
datasets using GPU clusters
Proceedings Symposium on Parallel Graphics and Visualiza-
tion *04, pp. 1-7,2004

[4] K.L. Ma, J.8. Painter, C.D. Hansen, M.F. Krogh'— Parallel volume
rendering using binary-swap image composition
IEEE Computer Graphics and Applications, 14(4) pp. 59-68, 1994

51 A. Stompel, K.L. Ma, E. Lum, J.Ahrens, J. Patchett — SLIC: Scheduled
Linear Image Compositing for Parallel Vollume Rendering
Proceedings of Parallel Visualization Graphics '03, 2003

[6] M. Magallon, M. Hopf, T. Ertl — Parallel volume rendering using PC
graphics hardware
Proceedings of Pacific Graphics 01, pp. 384 - 389

7 M. Ogata, S. Muraki, X. Liu, K.L. Ma — The design and evaluation of a
pipelined image compositing device for massively parallel volume
rendering.

Proceedings of Workshop on Volume Graphics '03, pp. 61-68, 2003

(8] H. Fuchs, Z. Kedem, and B. Naylor — On Visible Surface Generation
by A Priori Tree Structures
Proceedings of the ACM SIGGRAPH '80 Conference, pp. 124-133,
1980

9] Xilinx - ML310 Board Documentation
http://www.xilinx.com/products/boards/ml3 10/current/

[10] OpenGL — The OpenGL Graphics System: A Specification
Version 2.0
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf ,
2004/10/22

[11] The MathWorks — Matlab The Language of Technical Computing
http://www.mathworks.com/products/matlab/

[12] Xilinx — Xilinx System Generator Users Guide
Version 7.1
http://www.xilinx.com/products/software/sysgen/app_docs/
user_guide.htm

714

