sk

ZAZEE S 2005 =4 Vol. 32, No. 1(A)

A Simple Method to Overcome the Restriction of the SACK
Blocks' Number in SACK_TCP

Cui Lin and Choong Seon Hong
School of Electronic and Information of Kyung Hee University

cuilin@networking.khu.ac kr, cshong@khu.ac.kr

Abstract

By definition of RFC 2018, each segments block of data queued at the data receiver is defined
in the SACK option by two 32-bit unsigned integers in network byte order. Since TCP Options field
has a 40-byte maximum length, when error bursts occur, we note that the limitation of maximum
available option space may not be sufficient to report all blocks present in the receiver's queue
and lead to unnecessarily force the TCP sender to retransmit packets that have actually been
received but not carried related information in SACK option field. For overcoming this restriction, in
this paper, a new solution is designed to further improve the performance of TCP SACK and
prevent those unwanted retransmissions. Simulation result shows that the implementation of our

proposal is effective.

1. Introduction

‘Multiple packet losses from a data window can
have a catastrophic effect on TCP throughput. TCP
uses a cumulative acknowledgment scheme and only
can retransmits just one dropped packet per
round-trip time, when multiple packets are lost from
a window, this forces the sender to either wait a
round trip time to find out ‘about each lost packet,
or unnecessarily retransmit segments which have
been successfully received.

SACK is a strategy which corrects this behavior in
the face of muitiple dropped segments. With
selective acknowledgments, the data receiver can
inform the sender about all segments that have
arrived successfully, thus the sender only need to
retransmit the segments that have actually been lost.
For this purpose, a selective acknowledgment
(SACK) mechanism was defined in RFC 2018 [1].

However, in implementation of SACK TCP, each
segments block of data queued at the data receiver
is defined in the SACK option by two 32-bit
unsigned integers as two edges seguence number.

Because TCP Options field has a length limit of 40

bytes, so the 40 bytes available for TCP-options can
specify a maximum of 4 blocks. Also, It is expected
that SACK will often be used in conjunction with the
Timestamp option used for RTTM [2], which takes
an additional 10 bytes (plus two bytes of padding);
thus a maximum of 3 SACK blocks will be allowed in
this case (actually, it is usually the case and 3 is

This work was supported by MIC

- window and degrade the

default value in ns2).

This restriction can, under error bursts’
environment, cause unnecessary retransmission
because of no enough space to convey :all

information about received segments. Thereby it will
bring unnecessary shrinkage of TCP congestion
performance of TCP
connections.

In this paper, we propose a new solution to
overcome this limitation. By implementation of our
proposal, we can convey all information about lost
segments with least bytes no matter how poor the
environment is.

The rest of this paper is organized as follows: We
introduce related works in Section il, present our
proposal in Section Ul and simulation result m
Section 1V, finally we conclude in Section V.

2. Current SACK Option Format

The current SACK option format as defined in RRC
2018 [1] is as shown in Fig. 1. lts limitation ‘has
described in section .

Kind=5 Length

Left edge of 17 block

Right edge of 1% block

a2

Left edge of n™ block

Right edge of n® block
Fig. 1 Current SACK option format

337

FIHFE T EUYS 2005 =24 Vol. 32, No. 1(A)

3. Our Proposal

Since TCP does not change the maximum segment
size (MSS) once the TCP connection is established,
and all segments preceding the last one has MSS as
their size, we can uniquely denote a segment by its
left edge’s sequence number, in other words, you
can certainly know a segment’s sequence number
range as long as you know its left edge’s sequence
number, and so do we in this paper. Therefore, we
well use this characteristic and present a very
effective SACK mechanism. By implementation of our
proposal, the sender can be able to effectively
retransmit all segments which have actually been lost
together with new segments in a burst of data
sending and avoid any unnecessary retransmission.
To carry it out, refer to Fig.2, in our proposal, we
represent lost segments information by segment
order’'s offset instead of 32-bit absolute sequence
number. Thus, in order to let the sender wake up to
whole gaps information in receiver's sequence
space, since the sender has known the size of
segment, and acknowiedgment number field in ACK’s
TCP header has specified first gap’s left edge by
32-bit absolute sequence number, the receiver just
need to send other gaps information in sequence
space. So, the following offset fields named offset1,
offset2,---offsetn, only need respectively to represent
the offset with respect to the segment specified by
acknowledgment number field or previous offset field
in segment order. Out of question, by 32-bit
sequence number of first gap’s left edge
(acknowledge number field), size of segment and
offsets in segment order, the sender can easily be
aware of all 32-bit sequence numbers of all gaps in
sequence space.

As shown in above Fig. 2, in our proposed SACK
option format, each offset field consists of 1 byte.
Wherein, first bit is multiple segments’ gap flag
(denoted it by M-flag in Fig.3), and other 7 bits
represent real offset, 7 bits can represent up to
27-1=127. We think 7 bits are enough (even if each
offset consist of 2 bytes, our proposal is still more

effective and using least bytes). As for the
interpretation of multiple segments’ gap flag, “0”
indicates that this offset corresponds to first

segment of a gap no matter it consists of a single
lost segment or multiple lost segments; but “1” just
indicates that this offset corresponds to last segment
of a gap consists of multiple successively lost
segments. Obviously, environment condition becomes
worse, the multiple segments’ gap flag is more

effective.

To wunderstand more easily, we illustrate the
proposed mechanism in Fig. 3. In this scenario, the
sender can grasp lost segments’ information by only
5 bytes, under the same scenario, for getting the
same result, current SACK mechanism needs 26
bytes (2+8%3=26).

Kind=5 Length
M- redd offset |M- | realoffset M- | nalofiset
Fug | Obis) |fag | Obis) | | Qbe) |
€ offsetl '%(- offset2 —ﬂ@ offset3 =)

Reserve for Timestamp and future usage of TCP

Fig 2 Proposed SACK option format

K ACK paket How did the sade
Received [Aa SACK aption fitld determine whith segments
Segment | Num [OFal | Omedd | Ofes | heve been lost?

5000 5500 5500 (Noml ACK)
5500 (Lost)
5000 3300 5500
6500 (Lost)
7000 550 | 2 5500, 5500+500*3=6500
7500 (Lost)
8000 (Lost)
8500 (Lost)
9000 (Lost)
8500 (Lost)
3] A=3500, B=A+3009=6500, |
10000 3500 1 <uze, | cers, | 133 C=B+50043=7500,
et next D=C+500%(132- 128}5 500.
m { m | 138, becase D>128, so lost:
=g, =1, emhiple | 55005500, 750080008500,
single) | cot)) 9000 9500
Fig. 3 Proposed SACK mechanism
By our proposal, n lost segments will need a

iength of (n+1) bytes at most, and 40 bytes are
available for more than 39 (or 29 with timestamp)
lost segments. Actually, it is clear that we do not
need to represent so many lost segments’
information by one ACK packet. Therefore, we can
minimize the payload of ACK packet and save
enough space to future usage of TCP. In one word,

due to optimized SACK option’s mechanism, the
improvement of TCP performance and energy
efficiency, all become possible.

4. Simulation

We did simulation in NS2 and observed the

transmission of packets through the network. We
used multiple error model in order to product error
burst effect in 10M link and 2M link respectively,
and the main parameters in the error model are
listed in the following:

338

AT FESEAS] 2005 =8

Vol. 32, No. 1(A)

set tmp [new ErrorModel/Uniform 0 pkt]
set tmp1 [new ErrorModel/Uniform .05 pkt]
set m_periods [list 0.5 .0375]

set m_transmx { {0.95 0.05} {1 0} }

set m_trunit pkt ’

set m_sttype pkt

set m_nstates 2

set m_nstart {lindex $m_states 0]

By comparison between Fig.4 and Fig.5, we noted
that packets with packet numbers 1314,1316 and
1317 are unnecessarily retransmitted because of the
limitation of SACK in implementation of standard
SACK TCP, while those packets are not retransmitted
in implementation of proposed SACK TCP as shown
in Figh. This shows clearly that the proposed SACK
does perform better than the present implementation.

Fig.6 shows that when TCP connections are
established over a long period of the error condition
environments, the proposed SACK performs far better
than the existing implementation. We see that the
new implementation of proposed SACK can avoid
some unnecessary degradation (see, the case at 60
sec) of performance and always gives a better
throughput than another one.

5. Conclusion

The limitation of current SACK implementation
indicates that it unfit to handle scenarios under error
bursts’ environment. (n this paper, our proposed
representation for TCP SACK can primely overcome
this problem. Simulation results also showed that the
implementation of our proposal for SACK is very
effective by means of the least bytes and most
robust mechanism in the high packet error rates’
scenarios.

1328 > Iy oy B &
. N . M N for e,
1324 4 . i
& C e * : S
1322 f= * 2 e
-) . *
1320 >
n . L
L 1318 Nl A
3 K &
1318 ety
3 FOA s
1314 o e
- ' . I
D 1312 3 % * *
X E = & -
&? 1310 W”—'OMW*«*-——KMM)E .
1308 .¢ - e
1306 &-
>
1304 +
*
1302 g
Rd
1300 g b
8.065 807 B.075 808 0.085 6503 8095 81 BI05 811 1S
Ti me(sec)

[OPackeu W [y opped packets » Acks X Cropped acks]

Fig. 4 Performance of Standard SACK TCP

Packet Nunber

8085 807 8075 600 B0 BO0 8085 81 8105 &1 815
Ti me{ sec)

|0mk¢u WD opped packets 7 Acks X Dropped acks ’

Fig.5 Performance of Proposed SACK TCP

160

155 |

150

145 |

140

Thr oughput (pkt s/ sec}

b e L s v Db s Wari P R s
% £ i b it

1 20 40 60 80 100 120 140 160 180 200
Ti me(sec)

'—-O—Standard SACK —#— Proposed SACK

Fig. 6 Throughput vs. Time
References

[1] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, "TCP selective
acknowledgment and options", RFC 2018, IETF, October 1996.

[2] V. Jacobson, R. Braden, D. Borman, 'TCP Extensions for
High Performance’, RFC 1323, IETF, May 1992.

[3] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, "An Extension
to the Selective Acknowledgement (SACK) Option for TCP", RFC
2883, IETF, July 2000.

[4] K. Fall, S. Floyd, "Simulation based Comparisons of Tahoe,
Reno, and SACK TCP", Computer Communications Review, vol.26,
pp 5-21, 1996.

[5] M. Allman, D.Glover, NASA Lewis, L. Sanchez, "Enhancing
TCP Over Satellite Channels Using Standard Mechanisms", RFC
2488, IETF, January 1999.

[6] S. Floyd, "lssues with TCP SACK®', Technical Report, LBL
Network Group, 1996.

[7] A. Romanow, S. Floyd, "Dynamics of TCP traffic over ATM
Networks", IEEE Journal on Selected Areas in Communications,
Vol. 13 No. 4, p 633-641, 1995.

[8] K.N. Srijith, Lillykutty Jacob, A.L. Ananda, "Worst-Case
Performance Limitation of TCP SACK and a Feasible Solution”,
|EEE Journal on Selected Areas in Communications,, 2002.

339

