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A Basic Study of the application of Implicitly Restarted Arnoldi Method
to the Small Signal Stability of Large Power Systems

D.J.Kim, Y.H.Moon
Korea Electrotechnology Research Institute

Abstract - This paper describes implicitly restarted
Arnoldi method (IRAM), which is a technique for
combining the implicitly shifted (R mechanism with a
k-step Arnoldi factorization to obtain a truncated form of
the implicitly shifted (QR-iteration. IRAM avoids numerical
difficulties and storage problems normally associated with
Arnoldi. This paper deals with the basic algorithms of
IRAM as an intial research phase for developing the full
featured eigenvalue analysis program for large power
system up to 30,000 states.

1. Introduction

Conventional QR [1,2] method for small signal stability
analysis are not applicable to very large-scale power
systems because of limitation of memory capacity,
computing time, and computation accuracy. In order to
evaluate the small signal stability of power systems, it is
usually required to calculate only a specific set of
eigenvalues with certain features of interest, for example,
local mechanical modes, inter-area modes, etc. Therefore,
significant effort has been expended to develop new
methods with such basic properties as sparcity based
techniques, finding a few specific set of eigenvalues, and
mathematical robustness with good convergence
characteristics and numerical stability [3,4].

Since the eigenanalysis of modern power systems deals
with matrices of very large dimension, sparcity techniques
play a key role in the analysis. Two of more popular
sparsity-based eigenvalue techniques for general
unsymmetrical matrices are S-method [3), which is based
on Lanczos method with Cayley transformation, and
modified Anoldi method [4]. Lanczos-type method is a very
successful method for the symmetrical eigenvalue problem,
bus has serious flaws in the case of unsymmetrical
eigenvalue problems as the phenomenon of ‘breakdown'.
The  modified Amoldi  method uses  complete
reorthogonalization and an iterative process with shift-invert
transformation  [5,6]. However, reorthogonalizaion will
requires extensive storage and repeatedly finding the
eigensystem of / will become prohibitive at a cost of
O(k*) flops. In order to overcome such difficulties, an
alternative has been proposed by Saad [7] to restart the
iteration with a vector that has been preconditioned so that
it is more nearly in a k-dimensional invariant subspace of
interest.  This  preconditioning takes the form of a
polynomial applied to the starting vector that is constructed
to damp unwanted components form the eigenvector
expansion. This technique is refereed to as explicit

(polynomial restarting). One of popular methods is
Arnoldi-Chebyshev method.

This paper describes another restarting approach which
can be appliable to very large power systems. This
approach is called implicitly restarted Arnoldi method
(IRAM) [8]. IRAM is a technique for combining the
implicitly shifted QR mechanism with a k-step Arnoldi
factorization to obtain a truncated form of the implicitly
shifted (QR-iteration. The numerical difficulties and storage
problems normally associated with Arnoldi process is
avoided. The algorithm is capable of computing a few (k)
eigenvalues with user specified features such as largest real
part or largest magnitude. Implicit Restarting provides a
means to extract interesting information from very large
Krylov subspaces while avoiding the storage and numerical
difficulties associated with the standard approach. It does
this by continually compressing the interesting information
into a fixed size k-dimensional subspace. This s
accomplished through the implicitly shifted ()R mechanism.

In this paper, the basics algorithms of IRAM are
described as an initial research phase for developing
sparcity-based eigenvalue program for studying the small
signal stability of very large power systems.

2. Algorithms of IRAM

2.1 Implicit @ Theorem
The Hessenberg decomposition is not unique. However,
H is unique once the first column of ) is specified [9].

This is essentially the case providled A has no zero
subdiagonal entries. Hessenberg matrices with this property
are said to be unreduced. A very important theorem that
clarifies the uniqueness of the Hessenberg reduction is the
implicit ¢) theorem.

Theorem 1. (Implicit @  Theorem)
Q:[QH'":qn] and V= [v],-n.'v,,]are
matrices with the property that both Q7AQ=H and
VTAV= G are upper Hessenberg where 4 € R"™" Let
k denote the smallest positive integer for which
hye1x=0. with the convention that k=mn if H is
q =, then g =t and
[ byl = g | for i=2:k. Moreover, if k<n,
then g1 = 0.

Suppose
orthogonal

unreduced. if

2.2 The Double Implicit shift QR
The single shift ()R iteration use h,, as the best

e
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approximate eigenvalue along the diagonal during each
iteration:
for k=1,2,...
p=H(n,n)
H—plI= UR (@R Factorization)
H=RU+ul
end
However, the eigenvalues a, and a, of
G= (hh:';"hh::) m=n—1
are complex then h,, would tend to be a poor approximate
eigenvalue. A way to get around this difficulty is to
perform two single-shift QR steps in succession using a;
and a, as shifts:

H-a=UR,
H,=RU+al

H—al=U,R,
Hy=RU,+ay/

These equations can be manipulated to show that
(W0 (RR) =M
where M is defined by
M= (H-a,J)(H—- a,])
Note that A/ is a real matrix since
M=H*—sH+tI

where

s=a,+a,=h,,+h,=trace(G) €R
and

t=a0,= h‘mmh‘nn_ hmnh‘nm = det(G) ER

Since this step requires O(n®) flops to compute H,
from A, this is not a practical course of action to compute
112=ZTHZ, where Z is computed from real QR
factorization, M= ZR. However, by applying to the
Implicit (Q theorem, the double shift step with O(n?)
flops can be implemented. In particular we can effect the
transition from H to H, in O(n?) flops if we compute
Me,, the first column of AL The first column of A is
Me, = [x:y: z, OO]T where

z = bl + hyghy — shy +t

y=bhy (hy +hyp—s)

2= hyhy

Then we can determine a Houscholder matrix Fp such

that P,(Me,) is a multiple of e and compute
Householder matrices P,,..., P,_, such that if Z is the
product Z = PP, P,_,, then ZTHZ is upper
Hessenberg and the first columns of Z and 2 are the
same.

2.3 k-step Arnoldi Factorization
If A€ C™™" then a relation of the form
AQ. = QH, +rel

where Q, € C"™* has orthonormal columns, @/, =0
and H, € C***is upper Hessenberg with non-negative
subdiagonal elements is called a A-step Arnoldi
Factorization of A. This equations are obtained from
Amnoldi process. In particular, if @=]g,..g,] and we

compare columns in AQ= QH, then
k+1
Ag= Y by 1<k<n-—1
i=1

Isolating the last term in the summation gives
k
Py 1@ = Ag— Ehikqi =Ny
i=1

where hy, = g7 Ag, for i=l:k. It follows that if 7, =0,
then g, is specified by
Qs = TP n
where hyyy o= |1 ] o
The g are called the Arnoldi vectors and they define an
orthonormal basis for the Krylov subspace x(4,q,,k):

span{q,. - ¢} = span{qy, Aq,---, A" 'q,}

2.4 Implicit Restarted Arnold Method

The IRAM determines the restart vector implicitly using
the QR iteration with shifts. The restart occurs after every
m steps and we assume that m > j where j is the number
of sought-after eigenvalues. The choice of the Aroldi
length parameter m depends on the problem dimension n,

the effects of orthogonality loss, and system storage
constraints. After m steps we have the Arnoldi factorization
AQc = QeHe+rcer,
The subscript "c" stands for "current”. The (R iteration
with p shifts is then applied to H. Here p=m—j and
we have H, = VTH.V because VTH®V, = H*Y). The
orthogonal matrix V=V .-~ V,, with 1] the orthogonal
matrix associated with the shift g, has two crucial
properties:

() [V],; =0 for i=1:71. This is because each V/ is
upper Hessenberg and so V& R™*™ has lower
bandwidth p=m —j.

(2) Ve, = Q(HC“#pf)(Hc_ﬂp—ll) e (He—mle
where o is a scalar.

We obtain the following transformation:
AQ, = Q. H, + rCeZ; 4
where @, = Q-V. In view of property (1),
AQ (1:5) =@, (L 1:5)H (1:5.1:3) +v,,ljrce,3:
is a length-j Amoldi factorization. Back to the basic
Amold j iteration at step j+1 and performing p steps, we
can have a new length-m Arnoldi factorization.

Figure 1-3 picture one cycle of the iteration for clear
understanding of each step of IRAM.
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Fig. 1. Step 1: mn-step Arnoldi Factorization, Qj+ij+p 18,
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Fig. 2. Step 2: Applying the implicitly shifted QR Step,
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Fig. 3. Step 3: j-step Arnoldi factorization after discarding the

T
last p columns, QH, +v, e

3. Conclusions

This paper described implicitly restarted Arnoldi
method (IRAM). IRAM combines the implicitly shifted QR
mechanism with a k-step Arnoldi factorization to obtain a
truncated form of the implicitly shifted (QR-iteration.
Implicit Restarting provides a means to extract interesting
information from very large Krylov subspaces while
avoiding the storage and numerical difficulties associated
with the standard approach. It does this by continually
compressing the interesting information into a fixed size
k-dimensional subspace. In the on-going research phase, a
new sparcity-based eigenvalue algorithm applicable to very
large power system will be developed using IRAM
algorithm.
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