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Abstract - This paper deals with power system
stabilization problem using a network control system
in which the control is applied through a
communication channel in feedback form. Analysis and
synthesis issues are investigated by modeling the
packet delivery characteristics of the network as a
Bermoulli random variable, which is described by a
two state Markov chain. This model assumption
yields an overall system which is described by a
discrete-time Markov jump linear system. These
employ the norm to measure the performance of the
system, and they compute the norm via a necessary
and sufficient matrix inequality condition.

1. Introduction

In 1989, the standard Dole, Glover, Khargoneker,
and Francis (abbr. : DGKF) H,, controller(H,,C) was

presented(1]. This standard A, controller has been
extended to H,/sliding mode controller with an

application to power system stabilization[2-4]. This
paper is based on DGKF H,,C and deals with the

direction for power system stabilization problem using
a network control system in which the control is
applied through a communication channel in feedback
form(5].

Analysis and synthesis issues are investigated by
modeling the packet delivery characteristics of the
network as a Bernoulli random variable, which is
described by a two state Markov chain. This model
assumption yields an overall system which is
described by a discrete-time Markov jump linear
system. These employ the norm to measure the
performance of the system, and they compute the
norm via a necessary and sufficient matrix inequality
condition. Further, they derive necessary and sufficient
linear matrix inequality conditions for the synthesis of
the optimal controller.

In this paper, we consider analysis and synthesis
problems related to NCS. We focus on closed-loop
performance since this presumably yields more
guantitative information than looking at closed-loop
stability.

This models the packet delivery characteristics of
the network as a Bernoulli (the memoryless channel)
or two state Markov process. The latter is commonly
used to model the fading channel. These channel
models  when
Markovian jump linear system(MJLS).

combined with a discrete-time

2. Networked Control System(NCS) based on Hw

A networked control system (NCS) is one in which
a control loop is closed via a communication channel
The use of a network will lead to intermittent losses
or delays of the communicated information and may
deteriorate the performance or cause instability.

This concept briefly reviews work on network
modelling as well as analysis and synthesis results
for NCS. For control design we would like a network
model that is as simple as possible without sacrificing
accuracy. Next, these models discuss analysis and
synthesis results for NCS. Many results have
appeared in the literature to analysis closed-loop
stability in the face of network delays. These
approaches can be classified as deterministic or
stochastic.

1) Deterministic approaches assume the network
delays time-varying but bounded and use Lyapunov
theory to fine maximum delays that can be tolerated.

ii) Stochastic approaches try to prove a version of
stability such as mean square stability or exponential
mean square stability or exponential mean square
stability.

Control synthesis results for NCSs have employed
Gaussian(LQG) style costs, u
-synthesis, observers to compensate for delays, and

linear quadratic

results for stochastic jump systems.

Let ¥, (k) and ¥, denote a single measurement that
is sent and received respectively. If we apply these
assumptions then a simple packet-loss model for the

network is given by
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where & denotes a corrupted packet of information.

This is known as erasure model for a network.
0(k) is a random process that governs the packet
delivery characteristics of the network. Two state
Markov process can be used to model this burst
packet loss process (Fig. 1)
p;=Pl0k+1)=7]0(k=1i for i,jE€ {L R}
The bursty nature is modeled with p; ;> pr, and is
motivated by the Gilbert-Elliott analysis of fading
channels. To simplify the analysis, we assume all
communicated measurements are simultaneously
corrupted or received and, hence, the network can be
modeled with two states

> o _Juk), if (k=R

yf(k)‘{ 5, if O=L @
where y.(k) is the wvector of communicated
measurements available for feedback,

v, (k)= [vg aga,aza;]”. The measurements available

from on-board sensors are

yo=[80 ..... € €gen€y Vo v4] 3)
If the measurements are communicated without

error (8(k)=R), the controller can be written as

u (k)= Ay(k) where the measurement vector takes
the form
?/o(k)] |:COL1:|_E [Dou}'
k)= =| ~o" k)+| 7P o (k 3
y(k) {yc(k) cont Loou i+ D2 i) )
If the measurements are received with an error
(8(k)= L), then each controller discards the corrupted

packet and implements the modified control action that
uses only measurements from on-board sensors:

u (k)= k; % e, (k)+k, % (k) fori=0,..,4 (4)
In this case, the controller can be written as
u(k)= Ky (k) with the appropriate gain matrix Kj.
To summarize, each follower uses the following
switching logic:

u, (k)= X % ag(k)+ {1 = \) % a;_, (k)

+ky X (Uo(k)‘ v; (%))
+ky ke (R)+k, x ¢ (K),
u, (k)= k, % e, (k)+k, % ¢, (k),

ifok)=R ()
if 9(k)=1L (6
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Fig. 1. Two-state Markov network model
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Fig. 2. Closed-loop is a jump system
3. Conclusions

In this paper, the effect of a network in the
feedback loop of a control system was studied. The
control performance using the He gain from
disturbances to errors was measured. This gain can
be used to analyze the closed-loop performance of a
networked control system. The computational cost of
this method need further exploration since the number
of Markov states number of channels. Approximation,
such as lumping together the  receipt/loss
characteristics of several channels, may be required.
These controllers also derived optimal He synthesis
conditions for a class of jump systems. The
conditions can be applied to networked control
systems with a single centralized controller. In future
study, an extending recent results on distributed
control to jump systems will lead to useful tools for
networked systems.
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Appendix

Al Applied H., switching controller

2= T(x(1) (A-1)
2(8)= Az(8) + Byt ) + Byru( ) (A-2)
K= Ciz(D + D\ W,end H + Diptd 1) (A-3)
(&) = Cpa(B) + Dy, D + Dt &) (A-4)
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2(0=AZ D+ Bpd )+ By W () +ZEKLAD=HB) (A-5)
Weor (D =T1"BIX . 2(#) (A-6)
D= C2(H+ 1 Dy BIX2( 1) =[ Cy+ 17Dy BIX. ]2 )(A-T)

K.= Dy(B{X.+DLC) (A-8)
Dy=(DiPy) " (A-9)
=(Y CT+B,D}) Dy (A-10)
=(DaD3)"! (A-1D)
“‘(”r YoX)™! . (A-12)
Xo= Ric[ A-B,D,D}C, T°B,B[-B, DyuB] ]
i -TIT, - (A-B, DDyl (A-13)
T,=(I- Dy, D,DR)C, (A-14)
Y.=Rid (A4~B Dy DIC)T G- CZTDZICZ]
) CBE - (A-BO D)l (A-19)
= B,(I~ D} Dy Dy) (A-16)
w(=—Kz2(H (A-17)
mo=[ % %] (A-18)

A, :=A—BK,~Z.K,C, +1 BBl ~ Z.K Dy BN X..(A-19)

[ ;E?)] =[ ZK,.C, BZK][ i‘(?)] + [ z zlgloz,] Waorl B (7 —20)
[43]=[ & B[ 201 +] g |t (A-21)
A, :=A—B,K.,+ 1 BB/ X..
—Z.K(C,+ 1 *DyB[X..) (A-22)
2(H=Az(8) + Byt o §) + Byte( D)
= Az(H+ B(r 2Bl X )z(§) + Bud )
=(A+B|(r?BIX.)z()+ Byl 1) (A-23)
o (D)= GT=(2) (A-24)
A= D)=GCT=() (A-25)
Wz(8))=0*(2(D)/2 (A-26)
W (1) = o(2()) o 2(D) (A-27)
=G G
=GT2() G (A+ B(r Bl X.))
+ Bty — - suc{] < 0 (A-28)

whir - wesuc(D 2 —(GTB) " [GT(A+ B /(1 *BIX.N=(d
for GT2(9) > 0

pr - w-sue(D < —(GTBy) ! [GT(A+ B (T *B] X Na(#)
for GTz($ <0 (A-30)

w8y e sc(D2—(GTBY ' [GT(A+ B (1" B{X..))]2(d)

(A-29)

sign(o(2(1)) (A-31)
168w e () =— Ky suc?(D) sign(a(2(9)) (A-32)
Ky e = (GTBY ™' [GT(A+ B *BIX.)] (A-33)
w8 — s D =— Ky sueZ( D sign(o( 3(H)) (A-34)
A2 Lie Derivatives
W= h(x(D) (A-35)
2()= T(x(D)
c=(h Lp L% L%......... 17
=[2,(§) 2,(8) z3(d) z,(D...... 17 (A-36)
W)= CaAD (A-37)
W= L%(x(D) (A-38)
LD _ 1 i)+ LA (D)D) (A-39)
—d'j-;(,ﬂ = Lh(x( D) + L Ly W(x (D)D) (A-40)

) Lh 1

WD =g(k), o)~ LL k' LL Tk
()
where X0="g .

L

z :=Li=h=w

2y =L,h=
Lp=-32

LLh= a(th) =

2, =L3%=

k80 fo LT, - T)
axg 0

BTy YRR TEVP
ooty + pofy)

L (L1~ 1)e=0

(L h)f =

=[pdy Pdlz pdyy l’dmlf

L= (g = (- L e pdof))e

where
pd, = —-—Zﬂ(chos(é)—Xlsin(B))
pdy =
Veo .
dy =xaT(X2cos(8)+Rlsm(8))
pd, : =x'd-‘;—°°(R2cos(8)—Xlsin(8))
pds 1 =Yy
pds =Y,
bd7 : =anu
pdg =1 _X;Yd
by = (0= 23 0dy + (v, + 2,0 )pdy
Pdlo : =Yd( vd_x;)‘iv) + Ya( U,,qu'd)"‘ ia
pdy = _t(xd_x;x)l’dl
R
py s ==
»dy =T_1'd"
pdy = 'ﬁ w,bdy
pdy5 1= —b‘(ﬂlsfl*‘ﬂdn/}‘*'i’dmﬂdls)
pdy i =— M(Pdlsfl'*'/’dlsfhpdmﬁdm)
by ‘%}(ﬁdlopdzx)
pdyg
pdyg Lcos(8))
by : =(vd—x;iiq)pdn +2(x,—x',,)pdlpd2+(va+x,,i,1)ﬂdz3
pdy 1 =Y (x,— 2 )pd) + Y fx,— x)pdy + pd,
Py =Y (2~ 2 )pd) + pdy+ Y L, 5 )pd
Py =2Y (14 (x,~x)Y,)
= _i‘__,__L_ o)
() =g(x(8), v(D)) L% L%
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